Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup

  • Sébastien Bau
  • Denis Bémer
  • Florence Grippari
  • Jean-Christophe Appert-Collin
  • Dominique Thomas
Brief Communication


Increasing numbers of workers are exposed to airborne nanoparticles, the health effects of which remain difficult to evaluate. Effective density is considered to be a key characteristic of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because effective density cannot be measured directly, in this study the electrical mobility and aerodynamic equivalent diameters of airborne nanoparticles were measured simultaneously (tandem DMA/ELPI). Test aerosols consisted of spherical Di-Ethyl-Hexyl-Sebacate nanoparticles produced by nebulization (PALAS AGK 2000). To take into account the presence of multiple-charged particles at the DMA outlet, a theoretical model was developed in which the successive mechanisms undergone by particles are accounted for. Using this model, it is possible to determine the proportion of each population exiting the DMA (p = 1, 2,…,5 elementary charges) in each channel of the overall ELPI signal. Thus, particle effective density can be estimated for each population. The results indicate that using the ELPI signal alone could lead to significant misevaluation of particle effective density, with biases up to 150 %. However, when the proportion of each population is taken into account, particle effective density is determined within ±15 % of the theoretical value.


Nanoaerosol Effective density Electrical mobility diameter Aerodynamic diameter Tandem DMA/ELPI Insturumentation 


  1. Ahlvik P, Ntziachristos L, Keskinen J, Virtanen A (1998) Real time measurement of diesel particle size distribution with an electrical low pressure impactor. SAE Technical Paper No 980410Google Scholar
  2. Baron PA, Willeke K (2001) Aerosol measurement: principles, techniques and applications, 2nd Edn, New York, Wiley InterscienceGoogle Scholar
  3. Bau S, Witschger O (2013) A modular tool for analyzing cascade impactors data to improve exposure assessment to airborne nanomaterials. J Phys (Conf Ser) 429:012002. doi: 10.1088/1742-6596/429/1/012002 CrossRefGoogle Scholar
  4. Charvet A, Bau S, Paez-Coy NE, Bemer D, Thomas D (2014) Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM). J Nanopart Res 16:2418Google Scholar
  5. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol 38:1185–1205CrossRefGoogle Scholar
  6. Dong Y, Hays MD, Smith ND, Kinsey JS (2004) Inverting cascade impactor data for size-resolved characterization of fine particulate source emissions. J Aerosol Sci 35:1497–1512CrossRefGoogle Scholar
  7. Ehara K, Hagwood C, Coakley KJ (1996) Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyzer. J Aerosol Sci 27:217–234CrossRefGoogle Scholar
  8. Hand JL, Kreidenweis SM (2002) A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci Technol 36:1012–1026CrossRefGoogle Scholar
  9. Heim M, Kasper G, Reischl GP, Gerhart C (2004) Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol 38:3–14CrossRefGoogle Scholar
  10. Hinds WC (1999) Aerosol technology. Properties, behavior and measurement of airborne particles, 2nd edn, 483 p. Wiley, New YorkGoogle Scholar
  11. Huuluvainen H, Arffman A, Saukko E, Virtanen A, Keskinen J (2013) A new method for characterizing the bounce and charge transfer properties of nanoparticles. J Aerosol Sci 55:104–115CrossRefGoogle Scholar
  12. ICRP (1994) Human respiratory tract model for radiological protection. Pergamon, Oxford (ICRP publication 66)Google Scholar
  13. Katrib Y, Martin ST, Rudich Y, Davidovits P, Jayne JT, Worsnop DR (2005) Density changes of aerosol particles as a result of chemical reaction. Atmos Chem Phys 5:275–291CrossRefGoogle Scholar
  14. Kelly WP, Mc Murry PH (1992) Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosols. Aerosol Sci Technol 17:199–212CrossRefGoogle Scholar
  15. Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23:353–360CrossRefGoogle Scholar
  16. Kim SH, Mulholland GW, Zachariah MR (2009) Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon 47:1297–1302CrossRefGoogle Scholar
  17. Ku BK, Kulkarni P (2012) Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area. J Aerosol Sci 47:100–110CrossRefGoogle Scholar
  18. Ku BK, Emery MS, Maynard AD, Stolzenburg MR, Mc Murry PH (2006) In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis. Nanotechnology 17:3613–3621CrossRefGoogle Scholar
  19. Maricq MM, Podsiadlik DH, Chase RE (2000) Size distributions of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements. Aerosol Sci Technol 33:239–260CrossRefGoogle Scholar
  20. Maricq MM, Xu N, Chase RE (2006) Measuring particulate mass emissions with the electrical low pressure impactor. Aerosol Sci Technol 40:68–79CrossRefGoogle Scholar
  21. Marjamäki M, Keskinen J, Chen D-R, Pui DYH (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31:249–261CrossRefGoogle Scholar
  22. Marjamäki M, Lemmetty M, Keskinen J (2005) ELPI response and data reduction. I: response functions. Aerosol Sci Technol 39:575–582CrossRefGoogle Scholar
  23. Martinsson BG, Karlsson MNA, Frank G (2001) Methodology to estimate the transfer function of individual differential mobility analyzers. Aerosol Sci Technol 35:815–823CrossRefGoogle Scholar
  24. Mc Murry PH, Wang X, Park K, Ehara K (2002) The relationship between mass and mobility for atmospheric particles: a new technique for measuring particle density. Aerosol Sci Technol 36:227–238CrossRefGoogle Scholar
  25. Moisio M (1999) Real-time size distribution measurement of combustion aerosols. PhD thesis. Univeristy of Tempere, Tampere, Finland (ISBN 952-15-0328-9)Google Scholar
  26. NCRP (1997) Deposition, retention and dosimetry of inhaled radioactive substances. Report S.C. 57-2. NCRP, Bethesda, MDGoogle Scholar
  27. Pagels J, Khalizov AF, Mc Murry PH, Zhang RY (2009) Processing of soot by control sulphuric acid and water condensation—mass and mobility relationship. Aerosol Sci Technol 43:629–640CrossRefGoogle Scholar
  28. Qi C, Asbach C, Shin WG, Fissan H, Pui DYH (2009) The effect of particle pre-existing charge on unipolar charging and its implication on electrical aerosol measurement. Aerosol Sci Technol 43:232–240CrossRefGoogle Scholar
  29. Rissler J, Messing ME, Malik AI, Nilsson PT, Nordin EZ, Bohgard M, Sanati M, Pagels JH (2013) Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Sci Technol 47:792–805CrossRefGoogle Scholar
  30. Ristimäki J, Keskinen J (2006) Mass measurement of non-spherical particles: TDMA-ELPI setup and performance tests. Aerosol Sci Technol 40:997–1001CrossRefGoogle Scholar
  31. Ristimäki J, Virtanen A, Marjamäki M, Rostedt A, Keskinen J (2002) On-line measurement of size distribution and effective density of submicron aerosol particles. J Aerosol Sci 33:1541–1557CrossRefGoogle Scholar
  32. Schmid O, Karg E, Hagen DE, Whitefield PD, Ferron GA (2007) On the effective density of non-spherical particles as derived from combined measurements of aerodynamic and mobility equivalent size. J Aerosol Sci 38:431–443CrossRefGoogle Scholar
  33. Shapiro M, Vainshtein P, Dutcher D, Emery M, Stolzenburg M, Kittelson DB, Mc Murry PH (2012) Characterization of agglomerates by simultaneous measurement of mobility, vacuum aerodynamic diameter and mass. J Aerosol Sci 44:24–45CrossRefGoogle Scholar
  34. Skillas G, Burtscher H, Siegmann K, Baltensperger U (1999) Density and fractal-like dimension of particles from a laminar diffusion flame. J Colloid Interface Sci 217:269–274CrossRefGoogle Scholar
  35. Stein SW, Turpin BJ, Cai X, Huang PF, Mc Murry PH (1994) Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique. Atmos Environ 28:1739–1746CrossRefGoogle Scholar
  36. Stolzenburg MR (1988) An Ultrafine Aerosol Size Distribution Measuring System. Ph.D. Thesis. University of Minnesota, MinneapolisGoogle Scholar
  37. Stratmann F (1997) Differential electrical mobility analysis: a theoretical study. Aerosol Sci Technol 26:368–383CrossRefGoogle Scholar
  38. Van Gulijk C, Marijnissen JCM, Makkee M, Moulijn JA, Schmidt-Ott A (2004) Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. J Aerosol Sci 35:633–665CrossRefGoogle Scholar
  39. Virtanen A, Marjamäki M, Ristimäki J, Keskinen J (2001) Fine particle losses in electrical low pressure impactor. J Aerosol Sci 32:389–401CrossRefGoogle Scholar
  40. Virtanen A, Ristimäki J, Keskinen J (2004) Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci Technol 38:437–446CrossRefGoogle Scholar
  41. Virtanen A, Kannosto J, Huuvulainen H, Arffman A, Joutsensaari J, Saukko E, Hao L, Yli-Pirilä P, Tiitta P, Holopainen JK, Keskinen J, Wornsop DR, Smith A, Laaksonen A (2011) Bounce behavior of freshly nucleated biogenic secondary aerosol particles. Atmos Chem Phys 11:8759–8766CrossRefGoogle Scholar
  42. Zelenyuk A, Cai Y, Chieffo L, Imre D (2005) High precision density measurements of single particles: the density of metastable phases. Aerosol Sci Technol 39:972–986CrossRefGoogle Scholar
  43. Zelenyuk A, Cai Y, Imre D (2006) From agglomerates of spheres to irregularly shaped particles: determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci Technol 40:197–217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sébastien Bau
    • 1
  • Denis Bémer
    • 1
  • Florence Grippari
    • 2
  • Jean-Christophe Appert-Collin
    • 2
  • Dominique Thomas
    • 2
  1. 1.Institut National de Recherche et de SécuritéVandoeuvreFrance
  2. 2.Laboratoire de Réactions et Génie des ProcédésUniversité de LorraineNancy CedexFrance

Personalised recommendations