Advertisement

Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis

  • Pieter-Jan De TemmermanEmail author
  • Eveline Verleysen
  • Jeroen Lammertyn
  • Jan Mast
Research Paper

Abstract

Particle-tracking analysis (PTA) in combination with systematic imaging, automatic image analysis, and automatic data processing is validated for size measurements. Transmission electron microscopy (TEM) in combination with a systematic selection procedure for unbiased random image collection, semiautomatic image analysis, and data processing is validated for size, shape, and surface topology measurements. PTA is investigated as an alternative for TEM for the determination of the particle size in the framework of the EC definition of nanomaterial. The intra-laboratory validation study assessing the precision and accuracy of the TEM and PTA methods consists of series of measurements on three gold reference materials with mean area-equivalent circular diameters of 8.9 nm (RM-8011), 27.6 nm (RM-8012), and 56.0 nm (RM-8013), and two polystyrene materials with modal hydrodynamic diameters of 102 nm (P1) and 202 nm (H1). By obtaining a high level of automation, PTA proves to give precise and non-biased results for the modal hydrodynamic diameter in size range between 30 and 200 nm, and TEM proves to give precise and non-biased results for the mean area-equivalent circular diameter in the size range between 8 and 200 nm of the investigated near-monomodal near-spherical materials. The expanded uncertainties of PTA are about 9 % and are determined mainly by the repeatability uncertainty. This uncertainty is two times higher than the expanded uncertainty of 4 % obtained by TEM for analyses on identical materials. For the investigated near-monomodal and near-spherical materials, PTA can be used as an alternative to TEM for measuring the particle size, with exception of 8.9 nm gold, because this material has a size below the detection limit of PTA.

Keywords

Transmission electron microscopy Particle-tracking analysis Colloidal gold Polystyrene beads Method validation Measurement uncertainty Nanometrology 

Notes

Acknowledgments

Vikram Kestens (European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium) is acknowledged for critically reading and commenting on the paper. Elke Van Doren, Marina Ledecq, and Michel Abi Daoud Francisco (CODA-CERVA) are acknowledged for their expert technical assistance. The research leading to these results has been supported by the Nanokara project of CODA-CERVA and has been partially funded by the European Union Seventh Framework Programme (FP7/2007-2013) under the project NANoREG (A common European approach to the regulatory testing of nanomaterials), grant agreement 310584. This publication reflects only the author’s views, and the Community is not liable for any use that may be made of the information contained therein.

Supplementary material

Open image in new windowFig. 3
Video 1

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal gold material RM-8011 (nominal size 30 nm)

Video 2

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal gold material RM-8013 (nominal size 60 nm)

Video 3

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal polystyrene material P1 (nominal size 100 nm)

Video 4

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal polystyrene material H1 (nominal size 200 nm)

References

  1. Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405(0):322–330. doi: 10.1016/j.jcis.2013.02.030
  2. ASTM E766-98(2008)e1 (2008) Standard practice for calibrating the magnification of a scanning electron microscope. Am Soc Test Mater USA. doi: 10.1520/E0766-98R08E01
  3. ASTM E2834-12 (2012) Standard guide for measurement of particle size distribution of nanomaterials in suspension by nanoparticle tracking analysis (NTA). Am Soc Test Mater USA. doi: 10.1520/E2834-12
  4. Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci Process Impacts. doi: 10.1039/c3em00712j
  5. Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 28(29):10860–10872. doi: 10.1021/la301351k
  6. Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011a) Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv Powder Technol 22(6):766–770. doi: 10.1016/j.apt.2010.11.001
  7. Braun A, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011b) Certified Reference material ERM®- FD100: certification of equivalent spherical diameters of silica nanoparticles in water. Report EUR 25018 EN. European Union, Luxembourg. doi: 10.2787/33725
  8. Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W (2013) Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 121(10–12):1282–1291. doi: 10.1289/ehp.1306957
  9. Carr B, Wright M (2013) Nanoparticle Tracking analysis: a review of applications and usage 2010–2012. NanoSight Ltd, WiltshireGoogle Scholar
  10. De Temmerman P-J, Van Doren E, Verleysen E, Van der Stede Y, Francisco M, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotechnol 10(24). doi: 10.1186/1477-3155-10-24
  11. De Temmerman P-J, Lammertyn J, De Ketelaere B, Kestens V, Roebben G, Verleysen E, Mast J (2013) Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J Nanopart Res 16(1):1–22. doi: 10.1007/s11051-013-2177-1
  12. De Temmerman P-J, Verleysen E, Lammertyn J, Mast J (2014) Semi-automatic size measurements of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol 261(July):191–200. doi: 10.1016/j.powtec.2014.04.040
  13. EC (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union (275):38–40Google Scholar
  14. FEI (2012) Tecnai on-line help manual—options. http://www4.utsouthwestern.edu/mcif/manuals/tecnai/Options.pdf
  15. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. doi: 10.1007/s11095-010-0073-2
  16. Franks K, Braun A, Charoud-Got J, Couteau O, Kestens V, Lamberty A, Linsinger TPJ, Roebben G (2012) Certified reference material ERM®-FD304: certification of the equivalent spherical diameters of silica nanoparticles in aqueous solution. EUR 24620 EN. European Union, Luxembourg. doi: 10.2787/53476
  17. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.19671
  18. Hole P, Sillence K, Hannell C, Maguire C, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A, Cooke L, Haase A, Contal S, Manø S, Vennemann A, Sauvain J–J, Staunton K, Anguissola S, Luch A, Dusinska M, Korenstein R, Gutleb A, Wiemann M, Prina-Mello A, Riediker M, Wick P (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15(12):1–12. doi: 10.1007/s11051-013-2101-8
  19. ISO 13322-1 (2004) Particle size analysis—image analysis methods. Part 1: Static image analysis methods. International Organization for Standardization, GenevaGoogle Scholar
  20. ISO 9276-1 (1998) Representation of results of particle size analysis. Part 1: Graphical representation. International Organization for Standardization, GenevaGoogle Scholar
  21. ISO 9276-3 (2008) Representation of results of particle size analysis. Part 3: Adjustment of an experimental curve to a reference model. International Organization for Standardization, GenevaGoogle Scholar
  22. ISO TS 27687 (2008) Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplateInternational Organization for Standardization GenevaGoogle Scholar
  23. ISO/IEC GUIDE 98-3 (2008) Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). International Organization for Standardization, GenevaGoogle Scholar
  24. Kaiser DL, Watters RL (2007a) Reference material 8011: gold nanoparticles, nominal 10 nm diameter. Report of Investigation. National Institute of Standards & Technology, GaitersburgGoogle Scholar
  25. Kaiser DL, Watters RL (2007b) Reference material 8012: gold nanoparticles, nominal 30 nm diameter. Report of investigation. National Institute of Standards & Technology, GaitersburgGoogle Scholar
  26. Kaiser DL, Watters RL (2007c) Reference material 8013: gold nanoparticles, nominal 60 nm diameter. Report of investigation. National Institute of Standards & Technology, GaitersburgGoogle Scholar
  27. Klein C, Comero S, Stahlmecke B, Romazanov J, Kuhlbusch T, Van Doren E, De Temmerman P-J, Mast J, Wick P, Krug H, Locoro G, Hund-Rinke K, Kördel W, Friedrichs S, Maier G, Werner J, Linsinger TPJ, Gawlik BM (2011) NM-series of representative manufactured nanomaterials: NM-300 silver characterisation, stability, homogeneity. EUR 24693 EN—2011. doi: 10.2788/23079
  28. Linsinger TPJ, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson N, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. EUR 25404 EN. doi: 10.2787/63490
  29. Mast J, Demeestere L (2009) Electron tomography of negatively stained complex viruses: application in their diagnosis. Diagn Pathol 4:5. doi: 10.1186/1746-1596-4-5
  30. Masuda H, Gotoh K (1999) Study on the sample size required for the estimation of mean particle diameter. Adv Powder Technol 10(2):159–173. doi: 10.1163/156855299x00055
  31. McCaffrey JP, Baribeau JM (1995) A transmission electron microscope (TEM) calibration standard sample for all magnification, camera constant, and image/diffraction pattern rotation calibrations. Microsc Res Tech 32(5):449-454. doi: 10.1002/jemt.1070320507
  32. Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer, Pijnacker. doi: 10.1007/978-1-4020-9016-5
  33. Motzkus C, Macé T, Gaie-Levrel F, Ducourtieux S, Delvallee A, Dirscherl K, Hodoroaba VD, Popov I, Popov O, Kuselman I, Takahata K, Ehara K, Ausset P, Maillé M, Michielsen N, Bondiguel S, Gensdarmes F, Morawska L, Johnson GR, Faghihi EM, Kim CS, Kim YH, Chu MC, Guardado JA, Salas A, Capannelli G, Costa C, Bostrom T, Jämting ÅK, Lawn MA, Adlem L, Vaslin-Reimann S (2013) Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res 15(10):1–36. doi: 10.1007/s11051-013-1919-4
  34. Nanosight (2012) Nanosight: nanoparticle tracking analysis (NTA). http://www.nanosight.com/
  35. Nanosight (2013) Nanosight NTA 2.3 analytical software. Operating manual. NanoSight Ltd., WiltshireGoogle Scholar
  36. Orji NG, Dixson RG, Garcia-Gutierrez DI, Bunday BD, Bishop M, Cresswell MW, Allen RA, Allgair JA (2007) TEM calibration methods for critical dimension standards. Proc SPIE 6518. doi: 10.1117/12.713368
  37. Polyanskiy M (2014) RefractiveIndex.Info. http://refractiveindex.info/
  38. Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24(20):11350–11360. doi: 10.1021/la801367j
  39. Rice SB, Chan C, Brown SC, Eschbach P, Han L, Ensor DS, Stefaniak AB, Bonevich J, Vladár AE, Hight Walker AR, Zheng J, Starnes C, Stromberg A, Ye J, Grulke EA (2013) Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia 50(6):663. doi: 10.1088/0026-1394/50/6/663
  40. Roebben G, Rasmussen K, Kestens V, Linsinger TPJ, Rauscher H, Emons H, Stamm H (2013) Reference materials and representative test materials: the nanotechnology case. J Nanopart Res 15(3):1–13. doi: 10.1007/s11051-013-1455-2
  41. Roursgaard M, Jensen KA, Danielsen PH, Mikkelsen LÆ, Folkmann JK, Forchammer L, Jantzen K, Klingberg H, Cao Y, Loft S, Møller P (2014) Variability in particle size determination by nanoparticle tracking analysis. Adv Sci Eng Med 6:1–11. doi: 10.1111/jth.12602
  42. Russ JC (2011) The image processing handbook. CRC Press, Boca Raton. doi: 10.1017/S1431927611012050
  43. Saveyn H, De Baets B, Thas O, Hole P, Smith J, Van der Meeren P (2010) Accurate particle size distribution determination by nanoparticle tracking analysis based on 2D Brownian dynamics simulation. J Colloid Interface Sci 352(2):593–600. doi: 10.1016/j.jcis.2010.09.006
  44. Tsai DH, Delrio FW, Keene AM, Tyner KM, Maccuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477. doi: 10.1021/la104124d
  45. Tuoriniemi J, Johnsson A-CJH, Perez Holmberg J, Gustafsson S, Gallego-Urrea JA, Olsson E, Pettersson JBC, Hassellöv M (2014) Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci Tech Adv Mater 15(3):035009. doi: 10.1088/1468-6996/15/3/035009
  46. Van der Meeren P, Kasinos M, Saveyn H (2012) Relevance of two-dimensional Brownian motion dynamics in applying nanoparticle tracking analysis. Methods Mol Biol 906:525–534. doi: 10.1007/978-1-61779-953-2_42
  47. Wojdyr M (2010) Fityk : a general-purpose peak fitting program. J Appl Cryst 43:1126–1128. doi: 10.1107/S0021889810030499
  48. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. theory. analytical biochemistry 262(2):137–156. doi: 10.1006/abio.1998.2759

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pieter-Jan De Temmerman
    • 1
    • 2
    Email author
  • Eveline Verleysen
    • 1
  • Jeroen Lammertyn
    • 2
  • Jan Mast
    • 1
  1. 1.Service Electron MicroscopyVeterinary and Agrochemical Research Centre (CODA-CERVA)BrusselsBelgium
  2. 2.MeBioS-Biosensor Group, Department of BiosystemsKU Leuven-University of LeuvenLouvainBelgium

Personalised recommendations