Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver

  • Dwaipayan Mukherjee
  • Bey Fen Leo
  • Steven G. Royce
  • Alexandra E. Porter
  • Mary P. Ryan
  • Stephan Schwander
  • Kian Fan Chung
  • Teresa D. Tetley
  • Junfeng Zhang
  • Panos G. Georgopoulos
Research Paper

Abstract

Engineered nanomaterials (ENMs) possess unique characteristics affecting their interactions in biological media and biological tissues. Systematic investigation of the effects of particle properties on biological toxicity requires a comprehensive modeling framework which can be used to predict ENM particokinetics in a variety of media. The Agglomeration-diffusion-sedimentation-reaction model (ADSRM) described here is stochastic, using a direct simulation Monte Carlo method to study the evolution of nanoparticles in biological media, as they interact with each other and with the media over time. Nanoparticle diffusion, gravitational settling, agglomeration, and dissolution are treated in a mechanistic manner with focus on silver ENMs (AgNPs). The ADSRM model utilizes particle properties such as size, density, zeta potential, and coating material, along with medium properties like density, viscosity, ionic strength, and pH, to model evolving patterns in a population of ENMs along with their interaction with associated ions and molecules. The model predictions for agglomeration and dissolution are compared with in vitro measurements for various types of ENMs, coating materials, and incubation media, and are found to be overall consistent with measurements. The model has been implemented for an in vitro case in cell culture systems to inform in vitro dosimetry for toxicology studies, and can be directly extended to other biological systems, including in vivo tissue sub-systems by suitably modifying system geometry.

Keywords

Engineered nanomaterials Agglomeration Dissolution Settling Monte Carlo Cellular dosimetry Modeling and simulation Instrumentation 

References

  1. Bae E, Park HJ, Lee J, Kim Y, Yoon J, Park K, Choi K, Yi J (2010) Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ Toxicol Chem 29(10):2154–2160CrossRefGoogle Scholar
  2. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena, 1st edn. Wiley, New YorkGoogle Scholar
  3. Broday DM, Georgopoulos PG (2001) Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci Technol 34(1):144–159CrossRefGoogle Scholar
  4. Cohen J, DeLoid G, Pyrgiotakis G, Demokritou P (2013) Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7(4):417–431CrossRefGoogle Scholar
  5. Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216(52):9099–9105CrossRefGoogle Scholar
  6. Carneiro-da Cunha MG, Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2011) Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr Polym 85(3):522–528CrossRefGoogle Scholar
  7. Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218(27):4206–4212CrossRefGoogle Scholar
  8. Elzey S, Grassian V (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanoparticle Res 12:1945–1958CrossRefGoogle Scholar
  9. Fogler H (2005) Elements of chemical reaction engineering, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  10. Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64(15):1663–1693CrossRefGoogle Scholar
  11. Georgopoulos P (2008) A multiscale approach for assessing the interactions of environmental and biological systems in a holistic health risk assessment framework. Water Air Soil Pollut 8(1):3–21CrossRefGoogle Scholar
  12. Gregory J (1975) Interaction of unequal double layers at constant charge. J Colloid Interface Sci 51(1):44–51CrossRefGoogle Scholar
  13. Gregory J (1981) Approximate expressions for retarded van der Waals interaction. J Colloid Interface Sci 83(1):138–145CrossRefGoogle Scholar
  14. Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7(1):36CrossRefGoogle Scholar
  15. Hollander ED, Derksen JJ, Bruinsma OSL, van den Akker HEA, van Rosmalen GM (2001) A numerical study on the coupling of hydrodynamics and orthokinetic agglomeration. Chem Eng Sci 56(7):2531–2541CrossRefGoogle Scholar
  16. Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New YorkGoogle Scholar
  17. Jiang J, Oberdrster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11(1):77–89CrossRefGoogle Scholar
  18. Kajihara M (1971) Settling velocity and porosity of large suspended particle. J Oceanogr Soc Jpn 27(4):158–162CrossRefGoogle Scholar
  19. Kruis FE, Maisels A, Fissan H (2000) Direct simulation Monte Carlo method for particle coagulation and aggregation. AIChE J 46(9):1735–1742CrossRefGoogle Scholar
  20. Lazaridis M, Broday DM, Hov O, Georgopoulos PG (2001) Integrated exposure and dose modeling and analysis system 3. Environ Sci Technol 35(18):3727–3734CrossRefGoogle Scholar
  21. Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J, Chung KF, Tetley TD, Porter AE, Ryan MP (2013) The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47(19):11,232–11,240CrossRefGoogle Scholar
  22. Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y (2011) Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environ Sci Technol 45:9284–9292CrossRefGoogle Scholar
  23. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175CrossRefGoogle Scholar
  24. Mason M, Weaver W (1924) The settling of small particles in a fluid. Phys Rev 23(3):412–426CrossRefGoogle Scholar
  25. McGown DNL, Parfitt GD (1967) Improved theoretical calculation of the stability ratio for colloidal systems. J Phys Chem 71(2):449–450CrossRefGoogle Scholar
  26. Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105CrossRefGoogle Scholar
  27. Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24(3):872–878CrossRefGoogle Scholar
  28. Salgin S, Salgin U, Bahadir S (2012) Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths. Int J Electrochem Sci 7:12,404–12,414Google Scholar
  29. Sterling MC Jr, Bonner JS, Ernest ANS, Page CA, Autenrieth RL (2005) Application of fractal flocculation and vertical transport model to aquatic solsediment systems. Water Res 39(9):1818–1830CrossRefGoogle Scholar
  30. Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017CrossRefGoogle Scholar
  31. Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B, Winkle LV, Pinkerton KE, Zink JI, Xia T, Nel AE (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385–398CrossRefGoogle Scholar
  32. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJ, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138CrossRefGoogle Scholar
  33. Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159(12):3757–3762CrossRefGoogle Scholar
  34. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428CrossRefGoogle Scholar
  35. Zhao H, Maisels A, Matsoukas T, Zheng C (2007) Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems. Powder Technol 173(1):38–50CrossRefGoogle Scholar
  36. Zheludkevich ML, Gusakov AG, Voropaev AG, Vecher AA, Kozyrski EN, Raspopov SA (2003) Studies of the surface oxidation of silver by atomic oxygen, chap. 30. In: Kleiman J, Iskanderova Z (eds) Protection of materials and structures from space environment, space technology proceedings, vol 5. Springer, Dordrecht, pp 351–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dwaipayan Mukherjee
    • 1
    • 2
    • 3
  • Bey Fen Leo
    • 4
    • 5
  • Steven G. Royce
    • 1
    • 2
  • Alexandra E. Porter
    • 4
  • Mary P. Ryan
    • 4
  • Stephan Schwander
    • 1
    • 2
  • Kian Fan Chung
    • 6
  • Teresa D. Tetley
    • 6
  • Junfeng Zhang
    • 7
  • Panos G. Georgopoulos
    • 1
    • 2
    • 3
  1. 1.Environmental and Occupational Health Sciences Institute (EOHSI)Rutgers UniversityPiscatawayUSA
  2. 2.Department of Environmental and Occupational MedicineRutgers University-Robert Wood Johnson Medical SchoolPiscatawayUSA
  3. 3.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA
  4. 4.Department of Materials and London Centre of NanotechnologyImperial College LondonLondonUK
  5. 5.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  6. 6.National Heart and Lung InstituteImperial College LondonLondonUK
  7. 7.Nicholas School of the Environment and Duke Global Health InstituteDuke UniversityDurhamUSA

Personalised recommendations