Supramolecular assembly of single-walled carbon nanotubes at air-solid interface

  • Monika Poonia
  • R. K. Gupta
  • V. Manjuladevi
  • Sanjeev K. Gupta
  • Jamil Akhtar
Research Paper


We formed a stable and reversible Langmuir film (LF) of bundles of unfunctionalized single-walled carbon nanotubes (SWCNTs) at the air–water interface. The film exhibits gas-like and liquid-like phases. The Raman spectrograph of Langmuir–Blodgett (LB) film of single layer of SWCNTs on Si/SiO2 substrate shows the characteristic G, D, and radial breathing mode frequencies of the single-walled carbon nanotubes. Using atomic force microscope (AFM) in spreading resistance imaging mode, we obtained a dependence of target surface pressure on the assembly of SWCNTs in the LB films. The film deposited at very low surface pressure (0.5 mN/m) exhibited an assembly wherein the long axis of the nanotube bundles aligned in the direction of deposition. The LB films deposited in the liquid-like phase of the SWCNTs exhibited supramolecular donut structure. The average width of the SWCNTs was around 30 nm. The current–voltage characterization of the local structures of the LB films using the conducting AFM probe indicates semi-metallic and metallic nature of the donut and the hole in the donut (nanopore), respectively. Such supramolecular assembly of the SWCNTs can find application in the fabrication of the devices like sensors, photochemical cells, batteries, etc.


Langmuir film Langmuir–Blodgett films Single-walled carbon nanotubes Atomic force microscopy Supramolecular donut structure Two-dimensional nanostructure 



Authors from BITS Pilani are thankful the University Grants Commission, India for its support through Special Assistance Programme. Thanks are also due to Department of Science and Technology, India. We are thankful to Dr. Chandra Shekhar, Director CSIR-CEERI Pilani for his kind approval for carrying out this collaborative work.


  1. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phy Chem B 104:8911–8915. doi: 10.1021/jp002555m CrossRefGoogle Scholar
  2. Borghetti J, Derycke V, Lenfant S, Chenevier P, Filoramo A, Goffman M, Vuillaume D, Bourgoin JP (2005) Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv Mater 18:2535–2540. doi: 10.1002/adma.200601138 CrossRefGoogle Scholar
  3. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349. doi: 10.1038/30694 CrossRefGoogle Scholar
  4. Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris Ph (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310:1171–1174. doi: 10.1126/science.1119177 CrossRefGoogle Scholar
  5. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277:1978–1981. doi: 10.1126/science.277.5334.1978 CrossRefGoogle Scholar
  6. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–30. doi: 10.1063/1.882658 CrossRefGoogle Scholar
  7. Ding JW, Yan XH, Cao JX, Wang DL, Tang Y, Yang QB (2003) Curvature and strain effects on electronic properties of single-wall carbon nanotubes. J Phys: Condens Matter 15:L439–L445. doi: 10.1088/0953-8984/15/27/101 CrossRefGoogle Scholar
  8. Dresselhaus MS, Dresselhaus G, Avouris Ph (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer-Verlag, BerlinCrossRefGoogle Scholar
  9. Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris Ph (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445–2452. doi: 10.1021/nn800708w CrossRefGoogle Scholar
  10. Eyben P, Xu M, Duhayon N, Clarysse T, Callewaert S, Vandervorst W (2002) Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling. J Vac Sci Technol, B 20:471–478. doi: 10.1116/1.1424280 CrossRefGoogle Scholar
  11. Feng L, Li H, Li F, Shi Z, Gu Z (2003) Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir–Blodgett films. Carbon 41:2385–2391. doi: 10.1016/S0008-6223(03)00293-8 CrossRefGoogle Scholar
  12. Gaines GL (1966) Insoluble monolayers at liquid-gas interfaces. Interscience, New YorkGoogle Scholar
  13. Gao J, Yu A, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J Am Chem Soc 126:16698–16699. doi: 10.1021/ja044499z CrossRefGoogle Scholar
  14. Guo Y, Wu J, Zhang Y (2002) Manipulation of single-wall carbon nanotubes into aligned molecular layers. Chem Phys Lett 362:314–318. doi: 10.1016/S0009-2614(02)01085-0 Google Scholar
  15. Gupta RK, Manjuladevi V (2012a) Liquid Crystals at interfaces. Israel J Chem 52:809–819. doi: 10.1002/ijch.201200030 CrossRefGoogle Scholar
  16. Gupta RK, Manjuladevi V (2012b) Molecular interactions at interfaces. In: Meghea A (ed) Molecular interactions. InTech, Croatia, pp 81–104Google Scholar
  17. He P, Fang K, Zou G, Peltonen JPK, Rosenholm JB (2002) Elasticity of Langmuir monolayer detected by dynamic oscillation method. Colloid Surf A 201:265–273. doi: 10.1016/S0927-7757(01)01031-7 CrossRefGoogle Scholar
  18. Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101:189–197. doi: 10.1021/jp9611582 Google Scholar
  19. Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (2008) Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 8:591–595. doi: 10.1021/nl072996i CrossRefGoogle Scholar
  20. Hu L, Hecht DS, Gruner G (2010) Carbon nanotube thin films: fabrication, properties and applications. Chem Rev 110:5790–5844. doi: 10.1021/cr9002962 CrossRefGoogle Scholar
  21. Hwang SK, Lee J, Jeong SH, Lee PS, Lee KH (2005) Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization. Nanotechnology 16:850–858. doi: 10.1088/0957-4484/16/6/040 CrossRefGoogle Scholar
  22. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  23. Jia L, Zhang Y, Li J, You C, Xie E (2008) Aligned single-walled carbon nanotubes by Langmuir–Blodgett technique. J Appl Phys 104:074318-1–074318-6. doi: 10.1063/1.2996033
  24. Kim Y, Minami N, Zhu W, Kazaoui S, Azumi R, Matsumoto M (2003) Langmuir–Blodgett films of single-wall carbon nanotubes: layer-by-layer deposition and in-plane orientation of tubes. Jpn J Appl Phys 42:7629–7634. doi: 10.1143/JJAP.42.7629 CrossRefGoogle Scholar
  25. Klinke C, Hannon JB, Afzali A, Avouris Ph (2006) Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett 6:906–910. doi: 10.1021/nl052473f CrossRefGoogle Scholar
  26. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625. doi: 10.1126/science.287.5453.622 CrossRefGoogle Scholar
  27. Kongkanand A, Dominguez RM, Kamat PV (2007) Singel wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7:676–680. doi: 10.1021/nl0627238 CrossRefGoogle Scholar
  28. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnol 2:108–113. doi: 10.1038/nnano.2006.209 CrossRefGoogle Scholar
  29. Langevin D, Monroy F (2010) Interfacial rheology of polyelectrolytes and polymer monolayers at the air-water interface. Curr Opinion Colloid Interf Sci 15:283–293. doi: 10.1016/j.cocis.2010.02.002 CrossRefGoogle Scholar
  30. Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2005) Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671–679. doi: 10.1021/ja807059k CrossRefGoogle Scholar
  31. Li MY, Acero AA, Huang Z, Rice SA (1994) Formation of an ordered Langmuir monolayer by a non-polar chain molecule. Nature 367:151–153. doi: 10.1038/367151a0 CrossRefGoogle Scholar
  32. Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo WS, Dai H (2007) Langmuir–Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129:4890–4891. doi: 10.1021/ja071114e CrossRefGoogle Scholar
  33. Lin B, Schultz DG, Lin X-M, Li D, Gebhardt J, Meron M, Viccaro PJ (2007) Langmuir monolayers of gold nanoparticles. Thin Solid Films 515:5669–5673. doi: 10.1016/j.tsf.2006.12.023 CrossRefGoogle Scholar
  34. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129. doi: 10.1126/science.286.5442.1127 CrossRefGoogle Scholar
  35. Markovich G, Collier CP, Heath JR (1998) Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys Rev Lett 80:3807–3810. doi: 10.1103/PhysRevLett.80.3807 CrossRefGoogle Scholar
  36. Martel R, Shea HR, Avouris Ph (1999) Rings of single-walled carbon nanotubes. Nature 398:299–300. doi: 10.1038/18589 CrossRefGoogle Scholar
  37. Massey MK, Pearson C, Zeze DA, Mendis BG, Petty MC (2011) The electrical and optical properties of oriented Langmuir–Blodgett films of single-walled carbon nanotubes. Carbon 49:2424–2430. doi: 10.1016/j.carbon.2011.02.009 CrossRefGoogle Scholar
  38. Misewich JA, Martel R, Avouris Ph, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786. doi: 10.1126/science.1081294 CrossRefGoogle Scholar
  39. Monroy F, Ortega F, Rubio RG, Velarde MG (2007) Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Adv Colloid Interf Sci 134–135:175–189. doi: 10.1016/j.cis.2007.04.023 CrossRefGoogle Scholar
  40. Nguyen TT, Nguyen SU, Phuong DT, Nguyen DC, Mai AT (2011) Dispersion of denatured carbon nanotubes by using a dimethylformamide solution. Adv Nat Sci Nanosci Nanotechnol 2:035015-1–035015-4. doi: 10.1088/2043-6262/2/3/035015
  41. Park H, Afzali A, Han SJ, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nature Nanotechnol 7:787–791. doi: 10.1038/nnano.2012.189 CrossRefGoogle Scholar
  42. Roberts G (1990) Langmuir–Blodgett Films. Springer-Verlag, New YorkGoogle Scholar
  43. Saito R, Dresselhaus G, Dresselhaus MS (2007) Physical properties of carbon nanotubes. Imperial College Press, LondonGoogle Scholar
  44. Sear RP, Chung S-W, Markovich G, Gelbart WM, Heath JR (1999) Spontaneous patterning of quantum dots at the air–water interface. Phys Rev E 59:R6255–R6258. doi: 10.1103/PhysRevE.59.R6255 CrossRefGoogle Scholar
  45. Sgobba V, Rahman GMA, Guldi DM, Jux N, Campidelli S, Prato M (2006) Supramolecular assemblies of different carbon nanotubes for photoconversion processes. Adv Mater 18:2264–2269. doi: 10.1002/adma.200501493 CrossRefGoogle Scholar
  46. Shimoda H, Oh SJ, Geng HZ, Walker RJ, Zhang XB, McNeil LE, Zhou O (2002) Self assembly of carbon nanotubes. Adv Mater 14:899–901. doi: 10.1002/1521-4095(20020618)14:12<899:AID-ADMA899>3.0.CO;2-2 CrossRefGoogle Scholar
  47. Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145–2147. doi: 10.1063/1.1564291 CrossRefGoogle Scholar
  48. Tabe Y, Yamamoto T, Nishiyama I, Aoki KM, Yoneya M, Yokoyama H (2002) Can hydrophobic oils spread on water as condensed Langmuir monolayers? J Phys Chem B 106:12089–12092. doi: 10.1021/jp026724+ Google Scholar
  49. Tkachenko AV, Rabin Y (1996) Fluctuation-stabilized surface freezing of chain molecules. Phys Rev Lett 76:2527–2530. doi: 10.1103/PhysRevLett.76.2527 CrossRefGoogle Scholar
  50. Tulevski GS, Hannon J, Afzali A, Chen Z, Avouris Ph, Kagan CR (2007) Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J Am Chem Soc 129:11964–11968. doi: 10.1021/ja073647t CrossRefGoogle Scholar
  51. Ulman A (1991) An introduction to ultrathin organic films-from Langmuir–Blodgett to self assembly. Academic Press, New YorkGoogle Scholar
  52. Venet C, Pearson C, Jombert AS, Mabrook MF, Zeze DA, Petty MC (2010) The morphology and electrical conductivity of single-wall carbon nanotube thin films prepared by the Langmuir–Blodgett technique. Colloid Surf A 354:113–117. doi: 10.1016/j.colsurfa.2009.07.037 CrossRefGoogle Scholar
  53. Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW, Chang RPH (1998) A nanotube-based field-emission flat panel display. Appl Phys Lett 72:2912–2913. doi: 10.1063/1.121493 CrossRefGoogle Scholar
  54. Wang X, Ma X, Zang D (2013) Aggregation behavior of polystyrene-b-poly(acrylic acid) at the air-water interface. Soft Matter 9:443–453. doi: 10.1039/C2SM26797G CrossRefGoogle Scholar
  55. Wei Y, Weng D, Yang Y, Zhang X, Jiang K, Liu L, Fan S (2006) Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl Phys Lett 89:063101-1–063101-3 doi: 10.1063/1.2236465
  56. Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36. doi: 10.1088/0022-3727/31/8/002 CrossRefGoogle Scholar
  57. Zhang YB, Kanungo M, Ho AJ, Freimuth P, van der Lelie D, Chen M, Khamis SM, Datta SS, Johnson ATC, Misewich JA, Wong SS (2007) Functionalized carbon nanotubes for detecting viral proteins. Nano Lett 7:3086–3091. doi: 10.1021/nl071572l CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Monika Poonia
    • 1
  • R. K. Gupta
    • 1
  • V. Manjuladevi
    • 1
  • Sanjeev K. Gupta
    • 2
    • 3
  • Jamil Akhtar
    • 2
  1. 1.Department of PhysicsBirla Institute of Technology and SciencePilaniIndia
  2. 2.CSIR-Central Electronics Engineering Research Institute (CEERI)PilaniIndia
  3. 3.International Co-operation Division, Department of Electronics and Information Technology (DEITY)Ministry of Communications and Information TechnologyNew DelhiIndia

Personalised recommendations