Aluminum-doped ZnO nanoparticles: gas-phase synthesis and dopant location

  • Carolin Schilling
  • Manfred Zähres
  • Christian Mayer
  • Markus Winterer
Research Paper


Aluminum-doped ZnO (AZO) nanoparticles are studied widely as transparent conducting alternatives for indium tin oxide. However, the properties of AZO vary in different investigations not only with the amount of dopant and the particle size, but also with other parameters such as synthesis method and conditions. Hence, AZO nanoparticles, synthesized in the gas phase, were investigated to study the influence of the synthesis parameters dopant level, reactor temperature and residence time in the reaction zone on the particle characteristics. The local structure of the dopant in semiconductors determines whether the doping is functional, i.e., whether mobile charge carriers are generated. Therefore, information obtained from 27Al solid-state NMR spectroscopy, X-ray diffraction, photoluminescence and UV–Vis spectroscopy was used to understand how the local structure influences particles characteristics and how the local structure itself can be influenced by the synthesis parameters. In addition to AZO particles of different Al content, pure ZnO, Al2O3, ZnAl2O4 and core–shell particles of ZnO and Al2O3 were synthesized for comparison and aid to a deeper understanding of the formation of AZO nanoparticles in the gas phase.


ZnO AZO 27Al solid-state NMR Chemical vapor synthesis Doping Dopant Local structure 



Financial support was granted by the German Research Foundation (DFG) through the Research Training Group GRK1240 (Nanotronics—Photovoltaik und Optoelektronik aus Nanopartikeln) and by the Europian Union and by the Ministry of Innovation, Science and Research of the German State of North Rhine-Westphalia (NanoEnergieTechnikZentrum, NETZ). We would also like to thank Sebastian Kluge for the help on the PL and UV–Vis measurements and Samer Suleiman for EDX–SEM analysis and the Lab for Microanalytics and Thermal Analysis of the University Duisburg-Essen for the AAS measurements.


  1. Ali M, Winterer M (2010) Influence of nucleation rate on the yield of ZnO nanocrystals prepared by chemical vapor synthesis. J Phys Chem C 114(13):5721–5726CrossRefGoogle Scholar
  2. Ali M, Friedenberger N, Spasova M, Winterer M (2009) A novel approach for chemical vapor synthesis of ZnO nanocrystals: optimization of yield, crystallinity. Chem Vap Depos 15(7–9):192–198. doi: 10.1002/Cvde.200806722 CrossRefGoogle Scholar
  3. Avadhut YS, Weber J, Hammarberg E, Feldmann C, Gunne JSAD (2012) Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy. Phys Chem Chem Phys 14(33):11610–11625CrossRefGoogle Scholar
  4. Behrens M, Lolli G, Muratova N, Kasatkin I, Havecker M, d’Alnoncourt RN, Storcheva O, Kohler K, Muhler M, Schlogl R (2013) The effect of Al-doping on ZnO nanoparticles applied as catalyst support. Phys Chem Chem Phys 15(5):1374–1381. doi: 10.1039/C2cp41680h CrossRefGoogle Scholar
  5. Bräuniger Th, Jansen M (2013) Solid-state NMR spectroscopy of quadrupolar nuclei in inorganic chemistry. ZAAC Zeitschrift für anorganische und allgemeine Chemie 639(6):857–879. doi: 10.1002/zaac.201300102 CrossRefGoogle Scholar
  6. Brehm JU, Winterer M, Hahn H (2006) Synthesis and local structure of doped nanocrystalline zinc oxides. J Appl Phys 100(6):064311. doi: 10.1063/1.2349430 CrossRefGoogle Scholar
  7. Brus L (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409. doi: 10.1063/1.447218 CrossRefGoogle Scholar
  8. Chen KJ, Fang TH, Hung FY, Ji LW, Chang SJ, Young SJ, Hsiao YJ (2008) The crystallization and physical properties of Al-doped ZnO nanoparticles. Appl Surf Sci 254(18):5791–5795. doi: 10.1016/J.Apsusc.03.080 CrossRefGoogle Scholar
  9. Chiang Y-M, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New YorkGoogle Scholar
  10. Ellmer K (2008) Transparent conductive zinc oxide: basics and applications in thin film solar cells, vol 104. Springer, BerlinGoogle Scholar
  11. Ghosh B, Pal AJ (2011) Al-doped ZnO nanocrystals: electronic states through scanning tunneling spectroscopy. J Appl Phys 110(10):104303. doi: 10.1063/1.3662104 CrossRefGoogle Scholar
  12. Hansson R, Hayes P, Jak E (2004) Experimental study of phase equilibria in the Al–Fe–Zn–O system in air. J Metall Mater Trans B 35:633–642. doi: 10.1007/s11663-004-0004-x CrossRefGoogle Scholar
  13. Hartner S, Ali M, Schulz C, Winterer M, Wiggers H (2009) Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis. Nanotechnology 20(44):445701. doi: 10.1088/0957-4484/20/44/445701 CrossRefGoogle Scholar
  14. Kadam P, Agashe C, Mahamuni S (2008) Al-doped ZnO nanocrystals. J Appl Phys 104(10):103501. doi: 10.1063/1.3020527 CrossRefGoogle Scholar
  15. Kim M, Lai S, Laine RM (2011) Combinatorial nanopowder synthesis along the ZnO–Al2O3 tie line using liquid-feed flame spray pyrolysis. J Am Ceram Soc 94(10):3308–3318. doi: 10.1111/J.1551-2916.2011.04585.X CrossRefGoogle Scholar
  16. Kumar RS, Sathyamoorthy R, Sudhagar P, Matheswaran P, Hrudhya CP, Kang YS (2011) Effect of aluminum doping on the structural and luminescent properties of ZnO nanoparticles synthesized by wet chemical method. Phys E-Low-Dimens Syst Nanostruct 43(6):1166–1170. doi: 10.1016/J.Physe.01.022 CrossRefGoogle Scholar
  17. Lai HHC, Basheer T, Kuznetsov VL, Egdell RG, Jacobs RMJ, Pepper M, Edwards PP (2012) Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis. J Appl Phys 112(8):083708. doi: 10.1063/1.4759208 CrossRefGoogle Scholar
  18. Nam WH, Lim YS, Choi SM, Seo WS, Lee JY (2012) High-temperature charge transport and thermoelectric properties of a degenerately Al-doped ZnO nanocomposite. J Mater Chem 22(29):14633–14638. doi: 10.1039/C2jm31763j CrossRefGoogle Scholar
  19. Noriega R, Rivnay J, Goris L, Kalblein D, Klauk H, Kern K, Thompson LM, Palke AC, Stebbins JF, Jokisaari JR, Kusinski G, Salleo A (2010) Probing the electrical properties of highly-doped Al:ZnO nanowire ensembles. J Appl Phys 107(7):074312. doi: 10.1063/1.3360930 CrossRefGoogle Scholar
  20. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301. doi: 10.1063/1.1992666 CrossRefGoogle Scholar
  21. Prajapati CS, Sahay PP (2011) Growth, structure and optical characterization of Al-doped ZnO nanoparticle thin films. Cryst Res Technol 46(10):1086–1092. doi: 10.1002/Crat.201100192 CrossRefGoogle Scholar
  22. Rahman MM, Khan MKR, Islam MR, Halim MA, Shahjahan M, Hakim MA, Saha DK, Khan JU (2012) Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films. J Mater Sci Technol 28(4):329–335CrossRefGoogle Scholar
  23. Roberts N, Wang RP, Sleight AW, Warren WW (1998) Al-27 and Ga-69 impurity nuclear magnetic resonance in ZnO:Al and ZnO:Ga. Phys Rev B 57(10):5734–5741. doi: 10.1103/Physrevb.57.5734 CrossRefGoogle Scholar
  24. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of Zno by means of heavy Al doping. Phys Rev B 37(17):10244–10248. doi: 10.1103/Physrevb.37.10244 CrossRefGoogle Scholar
  25. Srdic V, Winterer M (2003) Aluminum-doped zirconia nanopowders: chemical vapor synthesis and structural analysis by rietveld refinement of X-ray diffraction data. Chem Mater 15(13):2668–2674. doi: 10.1021/cm021303q CrossRefGoogle Scholar
  26. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83(10):5447–5451. doi: 10.1063/1.367375 CrossRefGoogle Scholar
  27. Winterer M (2002) Nanocrystalline ceramics: synthesis and structure, vol 53. Springer.Google Scholar
  28. Zhang YL, Yang Y, Zhao JH, Tan RQ, Wang WY, Cui P, Song WJ (2011) Optical and electrical properties of aluminum-doped zinc oxide nanoparticles. J Mater Sci 46(3):774–780. doi: 10.1007/S10853-010-4813-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carolin Schilling
    • 1
  • Manfred Zähres
    • 2
  • Christian Mayer
    • 2
    • 3
  • Markus Winterer
    • 1
    • 3
  1. 1.Nanoparticle Process TechnologyUniversity Duisburg-EssenDuisburgGermany
  2. 2.Institute of Physical ChemistryUniversity Duisburg-EssenEssenGermany
  3. 3.Center for Nanointegration Duisburg-Essen (CeNide)University Duisburg-EssenDuisburgGermany

Personalised recommendations