Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies

Review

Abstract

A comprehensive assessment of the environmental risks posed by engineered nanomaterials (ENMs) entering the environment is necessary, due in part to the recent predictions of ENM release quantities and because ENMs have been identified in waste leachate. The technical complexity of measuring ENM fate and transport processes in all environments necessitates identifying trends in ENM processes. Emerging information on the environmental fate and toxicity of many ENMs was collected to provide a better understanding of their environmental implications. Little research has been conducted on the fate of ENMs in the atmosphere; however, most studies indicate that ENMs will in general have limited transport in the atmosphere due to rapid settling. Studies of ENM fate in realistic aquatic media indicates that in general, ENMs are more stable in freshwater and stormwater than in seawater or groundwater, suggesting that transport may be higher in freshwater than in seawater. ENMs in saline waters generally sediment out over the course of hours to days, leading to likely accumulation in sediments. Dissolution is significant for specific ENMs (e.g., Ag, ZnO, copper ENMs, nano zero-valent iron), which can result in their transformation from nanoparticles to ions, but the metal ions pose their own toxicity concerns. In soil, the fate of ENMs is strongly dependent on the size of the ENM aggregates, groundwater chemistry, as well as the pore size and soil particle size. Most groundwater studies have focused on unfavorable deposition conditions, but that is unlikely to be the case in many natural groundwaters with significant ionic strength due to hardness or salinity. While much still needs to be better understood, emerging patterns with regards to ENM fate, transport, and exposure combined with emerging information on toxicity indicate that risk is low for most ENMs, though current exposure estimates compared with current data on toxicity indicates that at current production and release levels, exposure to Ag, nZVI, and ZnO may cause toxicity to freshwater and marine species.

Keywords

Aggregation Sedimentation Dissolution Groundwater Soil Natural waters Environmental and health effects 

Supplementary material

11051_2014_2503_MOESM1_ESM.docx (593 kb)
Supplementary material 1 (DOCX 608 kb)

References

  1. Abdel-Fattah AI, Zhou D, Boukhalfa H, Tarimala S, Ware SD, Keller AA (2013) Dispersion stability and electrokinetic properties of intrinsic plutonium colloids: implications for subsurface transport. Environ Sci Technol 47(11):5626–5634Google Scholar
  2. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532Google Scholar
  3. Adeleye AS, Keller AA (2014) Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances. Water Res 49:236–250Google Scholar
  4. Adeleye AS, Keller AA, Miller RJ, Lenihan HS (2013) Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15(1):1–18Google Scholar
  5. Allen HE, Hansen DJ (1996) The importance of trace metal speciation to water quality criteria. Water Environ Res 68(1):42–54Google Scholar
  6. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468Google Scholar
  7. Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Challenges in exposure modeling of nanoparticles in aquatic environments. Hum Ecol Risk Assess Int J 17(1):245–262Google Scholar
  8. Auffan M, Achouak W, Rose J, Roncato M-A, Chanéac C, Waite DT, Masion A et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735Google Scholar
  9. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101Google Scholar
  10. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882Google Scholar
  11. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266Google Scholar
  12. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608Google Scholar
  13. Baumgartner H, Loeffler F (1986) Experimental and theoretical investigation of the time-dependent collection performance of electret filters. pp 708–711Google Scholar
  14. Bello D, Wardle BL, Yamamoto N, deVilloria RG, Garcia EJ, Hart AJ, Ahn K et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11(1):231–249Google Scholar
  15. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81(3):387–393Google Scholar
  16. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646Google Scholar
  17. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139Google Scholar
  18. Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47(12):4074–4085Google Scholar
  19. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409Google Scholar
  20. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158(1):41–47Google Scholar
  21. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200Google Scholar
  22. Bradford SA, Yates SR, Bettahar M, Simunek J (2002) Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour Res 38(12):1327Google Scholar
  23. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553Google Scholar
  24. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2–3):120–127Google Scholar
  25. Brouwer D, Duuren-Stuurman B, van Berges M, Jankowska E, Jankowska E, Bard D, Mark D (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanoparticle Res 11(8):1867–1881Google Scholar
  26. Cabot A, Smith RK, Yin Y, Zheng H, Reinhard BM, Liu H, Alivisatos AP (2008) Sulfidation of cadmium at the nanoscale. ACS Nano 2(7):1452–1458Google Scholar
  27. Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295(3):L400–L411Google Scholar
  28. Chang MCO, Chow JC, Watson JG, Hopke PK, Yi S-M, England GC (2004) Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J Air Waste Manag Assoc 54(12):1494–1505Google Scholar
  29. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126–134Google Scholar
  30. Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523Google Scholar
  31. Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23(11):5920–5928Google Scholar
  32. Cheng X, Kan AT, Tomson MB (2005) Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. J Mater Res 20(12):3244–3254Google Scholar
  33. Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450Google Scholar
  34. Chowdhury I, Cwiertny DM, Walker SL (2012) Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ Sci Technol 46(13):6968–6976Google Scholar
  35. Christian P, der Kammer FV, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343Google Scholar
  36. Coleman JG, Johnson DR, Stanley JK, Bednar AJ, Weiss CA, Boyd RE, Steevens JA (2010) Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ Toxicol Chem 29(7):1575–1580Google Scholar
  37. Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45(7):2777–2782Google Scholar
  38. Curwin B, Bertke S (2011) Exposure characterization of metal oxide nanoparticles in the workplace. J Occup Environ Hyg 8(10):580–587Google Scholar
  39. Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, Legaré P et al (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19(18):4494–4505Google Scholar
  40. Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199Google Scholar
  41. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol Vitro Int J Publ Assoc BIBRA 21(3):438–448Google Scholar
  42. Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218(27):4206–4212Google Scholar
  43. Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693Google Scholar
  44. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287Google Scholar
  45. Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinmann, OxfordGoogle Scholar
  46. Elzey S, Grassian V (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958Google Scholar
  47. Espinasse B, Hotze EM, Wiesner MR (2007) Transport and retention of colloidal aggregates of c60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ Sci Technol 41(21):7396–7402Google Scholar
  48. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290Google Scholar
  49. Fairbairn EA, Keller AA, Mädler L, Zhou D, Pokhrel S, Cherr GN (2011) Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mater 192(3):1565–1571Google Scholar
  50. Fang J, Shan X, Wen B, Lin J, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157(4):1101–1109Google Scholar
  51. Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, David Waite T (2005) Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids Surf Physicochem Eng Asp 265(1–3):88–94Google Scholar
  52. Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott GI, Decho AW, Kashiwada S, Murphy CJ, Saw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4(7):441–444Google Scholar
  53. Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44(1–2):143–158Google Scholar
  54. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316Google Scholar
  55. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490Google Scholar
  56. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359Google Scholar
  57. Friedlander SK, Pui DYH (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6(2):313–320Google Scholar
  58. Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5(6):380–389Google Scholar
  59. Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13(5):1227Google Scholar
  60. García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Barata C, Font C, Sanchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269(1–3):136–141Google Scholar
  61. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560Google Scholar
  62. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24(21):12385–12391Google Scholar
  63. Ghosh S, Mashayekhi H, Bhowmik P, Xing B (2010) Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir 26(2):873–879Google Scholar
  64. Gilbert B, Lu G, Kim CS (2007) Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. J Colloid Interface Sci 313(1):152–159Google Scholar
  65. Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45(2):839–851Google Scholar
  66. Gong L, Xu B, Zhu Y (2009) Ultrafine particles deposition inside passenger vehicles. Aerosol Sci Technol 43(6):544–553Google Scholar
  67. Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83(4):510–516Google Scholar
  68. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900Google Scholar
  69. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222Google Scholar
  70. Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25(3):320–332Google Scholar
  71. Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers—exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445Google Scholar
  72. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183Google Scholar
  73. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186Google Scholar
  74. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978Google Scholar
  75. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects-pros and cons. Environ Health Perspect 114(12):1818–1825Google Scholar
  76. Hammes J, Gallego-Urrea JA, Hassellöv M (2013) Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. Water Res 47(14):5350–5361Google Scholar
  77. Handy R, von der Kammer F, Lead J, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314Google Scholar
  78. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316Google Scholar
  79. Hendren CO, Lowry M, Grieger KD, Money ES, Johnston JM, Wiesner MR, Beaulieu SM (2013) Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environ Sci Technol 47(3):1190–1205Google Scholar
  80. Hennebert P, Avellan A, Yan J, Aguerre-Chariol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag 33(9):1870–1881Google Scholar
  81. Hitchman A, Sambrook Smith GH, Ju-Nam Y, Sterling M, Lead JR (2013) The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90(2):410–416Google Scholar
  82. Hoecke KV, Quik JTK, Mankiewicz-Boczek J, Schamphelaere KACD, Elsaesser A, der Meeren PV, Barnes C, Howard CV, Meent DVD, Rydzynski K, Dawson KA, Salvati A, Lesniak A, Silversmit G, Samber BD, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43(12):4537–4546Google Scholar
  83. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2(1):12Google Scholar
  84. Horie M, Nishio K, Fujita K, Kato H, Nakamura A, Kinugasa S, Endoh S, Miyauchi A, Yamamoto K, Murayama H, Niki E, Iwahashi H, Nakanishi J (2009) Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol 22(8):1415–1426Google Scholar
  85. Horie M, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Kinugasa S, Yamamoto K, Niki E, Yoshida Y, Iwahashi H (2013) Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ Toxicol 28(2):61–75Google Scholar
  86. Hyung H, Kim J-H (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42(12):4416–4421Google Scholar
  87. Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123Google Scholar
  88. Isrealachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic Press, LondonGoogle Scholar
  89. Jacobson MZ (2003) Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal. J Geophys Res Atmos 108(D8):4245Google Scholar
  90. Jaisi DP, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43(24):9161–9166Google Scholar
  91. Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42(22):8317–8323Google Scholar
  92. Jana NR, Earhart C, Ying JY (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19(21):5074–5082Google Scholar
  93. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42(12):821–826Google Scholar
  94. Jeong SW, Kim SD (2009) Aggregation and transport of copper oxide nanoparticles in porous media. J Environ Monit 11(9):1595Google Scholar
  95. Jeong CH, Hopke PK, Chalupa D, Utell M (2004) Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environ Sci Technol 38(7):1933–1940Google Scholar
  96. Jiang J, Oberdörster G, Biswas P (2009a) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89Google Scholar
  97. Jiang W, Mashayekhi H, Xing B (2009b) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625Google Scholar
  98. Johnson RL, Johnson GO, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43(14):5455–5460Google Scholar
  99. Johnston J, Lowry M, Beaulieu S, Bowles E (2010) State-of-the-science report on predictive models and modeling approaches for characterizing and evaluating exposure to nanomaterials. National Exposure Research Laboratory. http://www.epa.gov/athens/publications/reports/Johnston_EPA600R10129_State_of_Science_Predictive_Models.pdf. Accessed 2 Jan 2014
  100. Jones EH, Su C (2012) Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Res 46(7):2445–2456Google Scholar
  101. Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70(3):418–425Google Scholar
  102. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38(7):2242–2247Google Scholar
  103. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781Google Scholar
  104. Kandah MI (2004) Zinc and cadmium adsorption on low-grade phosphate. Sep Purif Technol 35(1):61–70Google Scholar
  105. Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42(3):896–900Google Scholar
  106. Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 2013:65–70Google Scholar
  107. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967Google Scholar
  108. Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7(8):e43983Google Scholar
  109. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17Google Scholar
  110. Kim H-J, Phenrat T, Tilton RD, Lowry GV (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43(10):3824–3830Google Scholar
  111. Kim B, Park C-S, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514Google Scholar
  112. Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763Google Scholar
  113. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851Google Scholar
  114. Kuhlbusch TA, Asbach C, Fissan H, Göhler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8(1):22Google Scholar
  115. Kumar P, Ketzel M, Vardoulakis S, Pirjola L, Britter R (2011) Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J Aerosol Sci 42(9):580–603Google Scholar
  116. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834Google Scholar
  117. Laakso L, Grönholm T, Rannik Ü, Kosmale M, Fiedler V, Vehkamäki H, Kulmala M (2003) Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos Environ 37(25):3605–3613Google Scholar
  118. Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38(16):4377–4382Google Scholar
  119. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169Google Scholar
  120. Lee JH, Ahn K, Kim SM, Jeon KS, Lee JS, Yu IJ (2012) Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanopart Res 14(9):1–10Google Scholar
  121. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266Google Scholar
  122. Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914Google Scholar
  123. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460Google Scholar
  124. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young S-H, Shvedova A et al (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115(3):377–382Google Scholar
  125. Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010a) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398(2):689–700Google Scholar
  126. Li X, Lenhart JJ, Walker HW (2010b) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26(22):16690–16698Google Scholar
  127. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010c) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467Google Scholar
  128. Li M, Zhu L, Lin D (2011a) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5):1977–1983Google Scholar
  129. Li X, Lenhart JJ, Walker HW (2011b) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104Google Scholar
  130. Li Z, Sahle-Demessie E, Hassan AA, Sorial GA (2011c) Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res 45(15):4409–4418Google Scholar
  131. Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102Google Scholar
  132. Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48(6):3281–3292Google Scholar
  133. Liu J, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45(17):7345–7353Google Scholar
  134. Liu J, von der Kammer F, Zhang B, Legros S, Hofmann T (2013a) Combining spatially resolved hydrochemical data with in vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. Environ Int 59:53–62Google Scholar
  135. Liu X, Chen G, Erwin JG, Adam NK, Su C (2013b) Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications. Water Res 47(16):6149–6156Google Scholar
  136. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012a) Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036Google Scholar
  137. Lowry GV, Gregory KB, Apte SC, Lead JR (2012b) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899Google Scholar
  138. Luther GW III, Tsamakis E (1989) Concentration and form of dissolved sulfide in the oxic water column of the ocean. Mar Chem 27(3–4):165–177Google Scholar
  139. Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46(13):7215–7221Google Scholar
  140. Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE et al (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46(2):752–759Google Scholar
  141. Ma R, Levard C, Michel FM, Brown GE, Lowry GV (2013) Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47(6):2527–2534Google Scholar
  142. Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B et al (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112Google Scholar
  143. Mackay D, Paterson S, Shiu WY (1992) Generic models for evaluating the regional fate of chemicals. Chemosphere 24(6):695–717Google Scholar
  144. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5(9):1676–1684Google Scholar
  145. Mattison NT, O’Carroll DM, Kerry Rowe R, Petersen EJ (2011) Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Environ Sci Technol 45(22):9765–9775Google Scholar
  146. Maynard AD, Zimmer AT (2003) Development and validation of a simple numerical model for estimating workplace aerosol size distribution evolution through coagulation, settling, and diffusion. Aerosol Sci Technol 37(10):804–817Google Scholar
  147. Meesters JA, Veltman K, Hendriks AJ, van de Meent D (2013) Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr Environ Assess Manag 9(3):e15–e26Google Scholar
  148. Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44(19):7329–7334Google Scholar
  149. Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232Google Scholar
  150. Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145Google Scholar
  151. Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269(2–3):182–189Google Scholar
  152. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386Google Scholar
  153. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627Google Scholar
  154. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22Google Scholar
  155. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839Google Scholar
  156. Pakrashi S, Dalai S, Sneha Ritika B, Chandrasekaran N, Mukherjee A (2012) A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations. Ecotoxicol Environ Saf 84:70–77Google Scholar
  157. Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Colloid Interface Sci 321(1):74–83Google Scholar
  158. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15Google Scholar
  159. Petosa AdamoR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549Google Scholar
  160. Petosa AR, Brennan SJ, Rajput F, Tufenkji N (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46(4):1273–1285Google Scholar
  161. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290Google Scholar
  162. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814Google Scholar
  163. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428Google Scholar
  164. Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017Google Scholar
  165. Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46(12):6705–6713Google Scholar
  166. Praetorius A, Arvidsson R, Molander S, Scheringer M (2013) Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environ Sci Process Impacts 15(1):161Google Scholar
  167. Pranesha TS, Kamra AK (1997) Scavenging of aerosol particles by large water drops: 3. Washout coefficients, half-lives, and rainfall depths. J Geophys Res Atmos 102(D20):23947–23953Google Scholar
  168. Quik JTK, Lynch I, Hoecke KV, Miermans CJH, Schamphelaere KACD, Janssen CR, Dawson KA, Stuart MAC, Meent DVD (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81(6):711–715Google Scholar
  169. Quik JTK, Vonk JA, Hansen SF, Baun A, Van De Meent D (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37(6):1068–1077Google Scholar
  170. Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2013) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279Google Scholar
  171. Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279Google Scholar
  172. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31(1):93–99Google Scholar
  173. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV (2012) Sulfidation of silver nanoparticles decreases escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000Google Scholar
  174. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7(1):50–60Google Scholar
  175. Rozan TF, Lassman ME, Ridge DP, Luther GW (2000) Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406(6798):879–882Google Scholar
  176. Saleh NB, Pfefferle LD, Elimelech M (2008a) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42(21):7963–7969Google Scholar
  177. Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008b) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355Google Scholar
  178. Savić R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618Google Scholar
  179. Schneider T, Jensen KA (2009) Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J Nanopart Res 11(7):1637–1650Google Scholar
  180. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193Google Scholar
  181. Seipenbusch M, Binder A, Kasper G (2008) Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg 52(8):707–716Google Scholar
  182. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365Google Scholar
  183. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429Google Scholar
  184. Singh G, Vajpayee P, Khatoon I, Jyoti A, Dhawan A, Gupta KC, Shanker R (2011) Chromium oxide nano-particles induce stress in bacteria: probing cell viability. J Biomed Nanotechnol 7(1):166–167Google Scholar
  185. Sirivithayapakorn S, Keller A (2003a) Transport of colloids in saturated porous media: a pore-scale observation of the size exclusion effect and colloid acceleration. Water Resour Res 39(4):1109Google Scholar
  186. Sirivithayapakorn S, Keller A (2003b) Transport of colloids in unsaturated porous media: a pore-scale observation of processes during the dissolution of air–water interface. Water Resour Res 39(12):1346Google Scholar
  187. Sirk KM, Saleh NB, Phenrat T, Kim H-J, Dufour B, Ok J, Golas PL et al (2009) Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 43(10):3803–3808Google Scholar
  188. Stanier CO, Khlystov AY, Pandis SN (2004) Nucleation events during the Pittsburgh air quality study: description and relation to key meteorological, gas phase, and aerosol parameters special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci Technol 38(sup1):253–264Google Scholar
  189. Stankus DP, Lohse SE, Hutchison JE, Nason JA (2010) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244Google Scholar
  190. Stebounova L, Guio E, Grassian V (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244Google Scholar
  191. Stumm W, Morgan J (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New YorkGoogle Scholar
  192. Sunkara B, Zhan J, He J, McPherson GL, Piringer G, John VT (2010) Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Appl Mater Interfaces 2(10):2854–2862Google Scholar
  193. Suresh AK, Pelletier DA, Wang W, Moon J-W, Gu B, Mortensen NP, Allison DP et al (2010) Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria. Environ Sci Technol 44(13):5210–5215Google Scholar
  194. ter Laak TL, Gebbink WA, Tolls J (2006) Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ Toxicol Chem SETAC 25(4):933–941Google Scholar
  195. Thio BJR, Montes MO, Mahmoud MA, Lee D-W, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ Sci Technol 46(13):6985–6991Google Scholar
  196. Tian Y, Silvera-Batista C, Ziegler K (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12(7):2371–2380Google Scholar
  197. Tian Y, Gao B, Wu L, Muñoz-Carpena R, Huang Q (2012) Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. J Hazard Mater 231–232:79–87Google Scholar
  198. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503–509Google Scholar
  199. Tiwari AJ, Marr LC (2010) The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles. J Environ Qual 39(6):1883Google Scholar
  200. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991Google Scholar
  201. Tosco T, Bosch J, Meckenstock RU, Sethi R (2012) Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ Sci Technol 46(7):4008–4015Google Scholar
  202. Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692Google Scholar
  203. Tovar-Sánchez A, Sánchez-Quiles D, Basterretxea G, Benedé JL, Chisvert A, Salvador A, Moreno-Garrido I, Blasco J (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8(6):e65451Google Scholar
  204. Tsai SJ, Ada E, Isaacs JA, Ellenbecker MJ (2009) Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 11(1):147–161Google Scholar
  205. Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38(2):529–536Google Scholar
  206. Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38(5):1605–1610Google Scholar
  207. Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44(21):8308–8313Google Scholar
  208. Velzeboer I, Hendriks AJ, Ragas AMJ, van de Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27(9):1942–1947Google Scholar
  209. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21Google Scholar
  210. Wang P, Keller AA (2009) Natural and engineered nano and colloidal transport: role of zeta potential in prediction of particle deposition. Langmuir 25(12):6856–6862Google Scholar
  211. Wang P, Shi Q, Liang H, Steuerman DW, Stucky GD, Keller AA (2008a) Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 4(12):2166–2170Google Scholar
  212. Wang Y, Li Y, Pennell KD (2008b) Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ Toxicol Chem 27(9):1860–1867Google Scholar
  213. Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040Google Scholar
  214. Wang C, Bobba AD, Attinti R, Shen C, Lazouskaya V, Wang L-P, Jin Y (2012a) Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environ Sci Technol 46(13):7151–7158Google Scholar
  215. Wang Y, Gao B, Morales VL, Tian Y, Wu L, Gao J, Bai W, Yang L (2012b) Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. J Nanopart. Res 14(9):1–9Google Scholar
  216. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125Google Scholar
  217. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13(5):1195–1203Google Scholar
  218. Westerhoff P, Kiser A, Hristovski K (2013) Nanomaterial removal and transformation during biological wastewater treatment. Environ Eng Sci 30(3):109–117Google Scholar
  219. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134Google Scholar
  220. Adeleye A, Conway J, Perez T, Rutten P, Keller A Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles (in preparation)Google Scholar
  221. Yah C, Simate G, Iyuke S (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25(2):477–491Google Scholar
  222. Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408Google Scholar
  223. Yin K, Lo IMC, Dong H, Rao P, Mak MSH (2012) Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption. J Hazard Mater 227–228:118–125Google Scholar
  224. Zhang KM, Wexler AS (2004) Evolution of particle number distribution near roadways—part I: analysis of aerosol dynamics and its implications for engine emission measurement. Atmos Environ 38(38):6643–6653Google Scholar
  225. Zhang Z, Kleinstreuer C et al (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36(2):211–233Google Scholar
  226. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42(8–9):2204–2212Google Scholar
  227. Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257Google Scholar
  228. Zhang H, Chen B, Banfield JF (2010) Particle size and pH effects on nanoparticle dissolution. J Phys Chem C 114(35):14876–14884Google Scholar
  229. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44(9):2948–2956Google Scholar
  230. Zhou D, Abdel-Fattah AI, Keller AA (2012a) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526Google Scholar
  231. Zhou D, Bennett SW, Keller AA (2012b) Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PLoS One 7(5):e37363Google Scholar
  232. Zhou D, Ji Z, Jiang X, Dunphy DR, Brinker J, Keller AA (2013) Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 8(11):e81239Google Scholar
  233. Zhu X, Cai Z (2012) Behavior and effect of manufactured nanomaterials in the marine environment. Integr Environ Assess Manag 8(3):566–567Google Scholar
  234. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26(5):976–979Google Scholar
  235. Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11(1):67–75Google Scholar
  236. Zhu Z-J, Carboni R, Quercio MJ, Yan B, Miranda OR, Anderton DL, Arcaro KF et al (2010) Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 6(20):2261–2265Google Scholar
  237. Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7(9):e46286Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.UC Center on the Environmental Implications of Nanotechnology and School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCA

Personalised recommendations