Advertisement

Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery

  • Indjara Mallmann da Silva
  • Juliana Ferreira Boelter
  • Nádya Pesce da Silveira
  • Adriano BrandelliEmail author
Research Paper

Abstract

There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around −20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

Keywords

Antimicrobial Bacteriocin Liposomes Chitosan Chondroitin sulfate 

Notes

Acknowledgments

This work received financial support of the Brazilian Agencies CNPq and CAPES.

References

  1. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRefGoogle Scholar
  2. Almgren M, Edwards K, Karlsson G (2000) Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A 174:3–21CrossRefGoogle Scholar
  3. Arauz LJ, Jozala AF, Mazzola PG, Vessoni-Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154CrossRefGoogle Scholar
  4. Benech RO, Kheadr EE, Lacroix C, Fliss I (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed cultured during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619CrossRefGoogle Scholar
  5. Brandelli A (2012) Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem 12:731–741CrossRefGoogle Scholar
  6. Breukink E, Kruijff B (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462:223–234CrossRefGoogle Scholar
  7. Colas JC, Shi W, Rao VS, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847CrossRefGoogle Scholar
  8. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 3:777–788CrossRefGoogle Scholar
  9. Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59:505–521CrossRefGoogle Scholar
  10. Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in gram positive bacteria. Curr Drug Targets 3:107–122CrossRefGoogle Scholar
  11. Fontana MB, Bastos MCF, Brandelli A (2006) Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Curr Microbiol 52:350–353CrossRefGoogle Scholar
  12. Gonçalves MC, Mertins O, Pohlmann AR, Silveira NP, Guterres SS (2012) Chitosan coated liposomes as an innovative nanocarrier for drugs. J Biomed Nanotechnol 8:240–250CrossRefGoogle Scholar
  13. Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173CrossRefGoogle Scholar
  14. Henriksen I, Smistad G, Karlsen J (1994) Interactions between liposomes and chitosan. Int J Pharm 101:227–236CrossRefGoogle Scholar
  15. Heunis TD, Smith C, Dicks LMT (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935CrossRefGoogle Scholar
  16. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: a review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297–315CrossRefGoogle Scholar
  17. Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832CrossRefGoogle Scholar
  18. Krumbiegel M, Arnold K (1990) Microelectrophoresis studies of the binding of glycosaminoglycans to phosphatidylcholine liposomes. Chem Phys Lipids 54:1–7CrossRefGoogle Scholar
  19. Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417:120–137CrossRefGoogle Scholar
  20. Malheiros PS, Micheletto YMS, Silveira NP, Brandelli A (2010) Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res Int 43:1198–1203CrossRefGoogle Scholar
  21. Malheiros PS, Sant’Anna V, Micheletto YMS, Silveira NP, Brandelli A (2011) Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes. J Nanoparticle Res 13:3545–3552CrossRefGoogle Scholar
  22. Malheiros PS, Sant’Anna V, Barbosa MS, Brandelli A, Franco BDGM (2012) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int J Food Microbiol 156:272–277CrossRefGoogle Scholar
  23. Mertins O, Dimova R (2013) Insights on the interactions of chitosan with phospholipid vesicles. Part II: membrane stiffening and pore formation. Langmuir 29:14552–14559CrossRefGoogle Scholar
  24. Mertins O, Sebben M, Pohlmann AR, Silveira NP (2005) Production of soybean phosphatidylcholine–chitosan nanovesicles by reverse phase evaporation: a step by step study. Chem Phys Lipids 138:29–37CrossRefGoogle Scholar
  25. Mertins O, Sebben M, Schneider PH, Pohlmann AR, Silveira NP (2008) Characterization of soybean phosphatidylcholine by 1H and 31P NMR. Quim Nova 31:1856–1859CrossRefGoogle Scholar
  26. Mertins O, Schneider PH, Pohlmann AR, Silveira NP (2010) Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy. Colloids Surf B 75:294–299CrossRefGoogle Scholar
  27. Motta AS, Brandelli A (2002) Characterization of an antimicrobial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70CrossRefGoogle Scholar
  28. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327CrossRefGoogle Scholar
  29. Pecora R, Berne BJ (2000) Dynamic light scattering with applications to chemistry, biology and physics. Dover Publications, New YorkGoogle Scholar
  30. Reginster JY, Heraud F, Zegels B, Bruyere O (2007) Symptom and structure modifying properties of chondroitin sulfate in osteoarthritis. Mini Rev Med Chem 7:1051–1061CrossRefGoogle Scholar
  31. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16CrossRefGoogle Scholar
  32. Satoh A, Toida T, Yoshida K, Kojima K, Matsumoto I (2000) New role of glycosaminoglycans on the plasma membrane proposed by their interaction with phosphatidylcholine. FEBS Lett 447:249–252CrossRefGoogle Scholar
  33. Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated nisin. J Agric Food Chem 53:8722–8728CrossRefGoogle Scholar
  34. Taylor TM, Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2007) Characterization of antimicrobial-bearing liposomes by zeta-potential, vesicle size, and encapsulation efficiency. Food Biophys 2:1–9CrossRefGoogle Scholar
  35. Taylor TM, Bruce BD, Weiss J, Davidson PM (2008) Listeria monocytogenes and Escherichia coli O157:H7 inhibition in vitro by liposome encapsulated nisin and ethylene diaminetetraacetic acid. J Food Safety 28:183–197CrossRefGoogle Scholar
  36. Wang Y, Li P, Kong L (2013) Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS Pharm Sci Tech 14:585–592CrossRefGoogle Scholar
  37. Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipids nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51:8073–8079CrossRefGoogle Scholar
  38. Yang S, Chen J, Zhao D, Han D, Chen X (2012) Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency. Int J Pharm 434:155–160CrossRefGoogle Scholar
  39. Zouhir A, Hammami R, Fliss I, Hamida JB (2010) A new structure-based classification of Gram-positive bacteriocins. Protein J 29:432–439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Indjara Mallmann da Silva
    • 1
  • Juliana Ferreira Boelter
    • 1
  • Nádya Pesce da Silveira
    • 2
  • Adriano Brandelli
    • 1
    Email author
  1. 1.Laboratorio de Bioquímica e Microbiologia AplicadaInstituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS)Porto AlegreBrazil
  2. 2.Laboratorio de Instrumentação e Dinâmica Molecular, Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations