Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation

  • Hany A. Elazab
  • Sherif Moussa
  • B. Frank Gupton
  • M. Samy El-Shall
Research Paper

Abstract

In this paper, we report a simple, versatile, and rapid method for the synthesis of Pd nanoparticle catalysts supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates via microwave irradiation. The important advantage of microwave dielectric heating over convective heating is that the reactants can be added at room temperature (or slightly higher temperatures) without the need for high-temperature injection. Furthermore, the method can be used to synthesize metal nanoparticle catalysts supported on metal oxide nanoparticles in one step. We also demonstrate that the catalyst-support interaction plays an important role in the low temperature oxidation of CO. The current results reveal that the Pd/Co3O4 catalyst has particularly high activity for CO oxidation as a result of the strong interaction between the Pd nanoparticles and the Co3O4 nanoplates. Optimizations of the size, composition, and shape of these catalysts could provide a new family of efficient nanocatalysts for the low temperature oxidation of CO.

Keywords

CO oxidation Microwave synthesis Pd nanoparticles Magnetite Fe3O4 nanoparticles Hexagonal Co3O4 nanoplates Hexagonal Ni(OH)2 nanoplates 

Notes

Acknowledgments

We thank the National Science Foundation (CHE-0911146 and OISE-1002970) for the support of this work.

Supplementary material

11051_2014_2477_MOESM1_ESM.doc (65.1 mb)
Figure S1 (a-e): TEM images of Fe3O4 and Ni(OH)2 nanoplates, and 50 wt% Pd nanoparticles supported on Fe3O4 and Ni(OH)2 nanoplates. (DOC 66698 kb)

References

  1. Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531CrossRefGoogle Scholar
  2. Abdelsayed V, Panda AB; Glaspell GP, El-Shall MS (2008) Nanoparticles: synthesis, stabilization, passivation, and functionalization. In: Nagarajan R, Hatton TA (eds) ACS symposium series 996, chap 17, pp 225–247Google Scholar
  3. Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834CrossRefGoogle Scholar
  4. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696CrossRefGoogle Scholar
  5. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206CrossRefGoogle Scholar
  6. Campbell CT, Grant AW, Starr DE, Parker SC, Bondzie VA (2000) Model oxide-supported metal catalysts: energetics, particle thicknesses, chemisorption and catalytic properties. Top Catal 14:43–51CrossRefGoogle Scholar
  7. Chen S, Si R, Taylor E, Janzen J, Chen J (2012) Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. J Phys Chem A 116:12969–12976Google Scholar
  8. Choudhary TV, Goodman DW (2002) CO-free fuel processing for fuel cell applications. Catal Today 77:65–78CrossRefGoogle Scholar
  9. Ertl G (2009) Reactions at solid surfaces. Wiley, New YorkCrossRefGoogle Scholar
  10. Farmer JA, Campbell CT (2010) Ceria maintains smaller metal catalyst particles by strong metal—support bonding. Science 329:933–936CrossRefGoogle Scholar
  11. Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem Int Ed 50:10064–10094CrossRefGoogle Scholar
  12. Gao F, Goodman DW (2012) Model catalysts: simulating the complexities of heterogeneous catalysts. Annu Rev Phys Chem 63:265–286CrossRefGoogle Scholar
  13. Glaspell G, Fuoco L, El-Shall MS (2005) Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. J Phys Chem B 109:17350–17355CrossRefGoogle Scholar
  14. Glaspell G, Hassan HMA, Elzatahry A, Abdelsayed A, El-Shall MS (2008) Nanocatalysis on supported oxides for CO oxidation. Top Catal 47:22–31CrossRefGoogle Scholar
  15. Green IX, Tang W, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739CrossRefGoogle Scholar
  16. Haag W, Gates B, Knoezinger H (1999) Advances in catalysis: the surface science approach toward understanding automotive exhaust conversion catalysis at the atomic level. Academic Press, San DiegoGoogle Scholar
  17. Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS (2011) Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir 27:15146–15154CrossRefGoogle Scholar
  18. Jansson J (2000) Low-temperature CO oxidation over Co3O4/Al2O3. J Catal 194:55–60CrossRefGoogle Scholar
  19. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer VJ (2002) On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal 211:387–397CrossRefGoogle Scholar
  20. Jernigan GG, Somorjai GA (1994) Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper (I) oxide, and copper (II) oxide—a surface science and kinetic study. J Catal 147:567–577CrossRefGoogle Scholar
  21. Jia C-J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen BM, Schüth F (2011) Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J Am Chem Soc 133:11279–11288CrossRefGoogle Scholar
  22. Jin M, Park J-N, Shon JK, Kim JH, Li Z, Park Y-K, Kim JM (2012) Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catal Today 185:183–190CrossRefGoogle Scholar
  23. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  24. Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111:2251–2320CrossRefGoogle Scholar
  25. Qiu G, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115:19626–19631CrossRefGoogle Scholar
  26. Radwan NRE, El-Shall MS, Hassan HMA (2007) Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution. Appl Catal A 331:8–18CrossRefGoogle Scholar
  27. Rodriguez JA (2011) Gold-based catalysts for the water–gas shift reaction: active sites and reaction mechanism. Catal Today 160:3–10CrossRefGoogle Scholar
  28. Santra AK, Goodman DW (2003) Oxide-supported metal clusters: models for heterogeneous catalysts. J Phys Condens Matter 15:R31–R62CrossRefGoogle Scholar
  29. Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, Starr DE, Shaikhutdinov SK, Libuda J, Freund HJ (2005) Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew Chem Int Ed 44:7601–7605CrossRefGoogle Scholar
  30. Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50CrossRefGoogle Scholar
  31. Siamaki AR, Khder AERS, Abdelsayed V, El-Shall MS, Gupton BF (2011) Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. J Catal 279:1–11CrossRefGoogle Scholar
  32. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, HobokenGoogle Scholar
  33. Wang W-W, Zhu Y-J, Ruan M-L (2007) Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9:419–426CrossRefGoogle Scholar
  34. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRefGoogle Scholar
  35. Widmann D, Behm RJ (2011) Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed 50:10241–10245CrossRefGoogle Scholar
  36. World Health Organization (1999) Carbon monoxide: environmental health criteria. World Health Organization, Geneva 213Google Scholar
  37. Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalyzed by Co3O4 nanorods. Nature 458:746–749CrossRefGoogle Scholar
  38. Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Vapor phase synthesis of supported Pd, Au and unsupported bimetallic nanoparticle catalysts for CO oxidation. Catal Commun 7:281–284CrossRefGoogle Scholar
  39. Zhou W, Yao M, Guo L, Li Y, Li J, Yang S (2009) Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of β-Ni(OH)2 and NiO from nanoplate building blocks. J Am Chem Soc 131:2959–2964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hany A. Elazab
    • 2
  • Sherif Moussa
    • 1
  • B. Frank Gupton
    • 1
    • 2
  • M. Samy El-Shall
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Chemical EngineeringVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Chemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations