Robust, ultrasmall organosilica nanoparticles without silica shells

  • Eoin Murray
  • Philip Born
  • Anika Weber
  • Tobias KrausEmail author
Research Paper


Traditionally, organosilica nanoparticles have been prepared inside micelles with an external silica shell for mechanical support. Here, we compare these hybrid core–shell particles with organosilica particles that are robust enough to be produced both inside micelles and alone in a sol–gel process. These particles form from octadecyltrimethoxy silane as silica source either in microemulsions, resulting in water-dispersible particles with a hydrophobic core, or precipitate from an aqueous mixture to form particles with both hydrophobic core and surface. We examine size and morphology of the particles by dynamic light scattering and transmission electron microscopy and show that the particles consist of Si–O–Si networks pervaded by alkyl chains using nuclear magnetic resonance, infrared spectroscopy, and thermogravimetric analysis.


Nanoparticle synthesis Stöber process Organosilica Micelles 

Supplementary material

11051_2014_2462_MOESM1_ESM.docx (581 kb)
Supplementary material 1 (DOCX 580 kb)


  1. Bourgeat-Lami E, Lang J (1998) Encapsulation of inorganic particles by dispersion polymerization in polar media—1. Silica nanoparticles encapsulated by polystyrene. J Colloid Interface Sci 197(2):293–308CrossRefGoogle Scholar
  2. Bourgeat-Lami E, Lang J (1999) Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles. J Colloid Interface Sci 210(2):281–289CrossRefGoogle Scholar
  3. Chavez JL, Wong JL et al (2008) Core–shell nanoparticles: characterization and study of their use for the encapsulation of hydrophobic fluorescent dyes. Langmuir 24(5):2064–2071CrossRefGoogle Scholar
  4. Couvreur P, Dubernet C et al (1995) Controlled drug-delivery with nanoparticles—current possibilities and future-trends. Eur J Pharm Biopharm 41(1):2–13Google Scholar
  5. Douce J, Boilot JP et al (2004) Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings. Thin Solid Films 466(1–2):114–122CrossRefGoogle Scholar
  6. Hediger HJ (1971) Infrarotspektroskopie. Akademische, FrankfurtGoogle Scholar
  7. Jalili MM, Moradian S et al (2007) Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano-silica. Prog Org Coat 59(1):81–87CrossRefGoogle Scholar
  8. Jovanovic AV, Underhill RS et al (2005) Oil core and silica shell nanocapsules: toward controlling the size and the ability to sequester hydrophobic compounds. Chem Mater 17(13):3375–3383CrossRefGoogle Scholar
  9. Lai W, Garino J et al (2002) Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials 23(1):213–217CrossRefGoogle Scholar
  10. Mijatovic J, Binder WH et al (2000) Characterization of surface modified silica nanoparticles by Si-29 solid state NMR spectroscopy. Mikrochim Acta 133(1–4):175–181CrossRefGoogle Scholar
  11. Muller RH, Mader K et al (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177CrossRefGoogle Scholar
  12. Murray E, Born P et al (2010) Synthesis of monodisperse silica nanoparticles dispersable in non-polar solvents. Adv Eng Mater 12(5):374–378CrossRefGoogle Scholar
  13. Philipse AP, Vrij A (1989) Preparation and properties of nonaqueous model dispersions of chemically modified, charged silica spheres. J Colloid Interface Sci 128(1):121–136CrossRefGoogle Scholar
  14. Qhobosheane M, Santra S et al (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278CrossRefGoogle Scholar
  15. Reetz MT, Zonta A et al (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol–gel materials. Angew Chem Int Edn English 34(3):301–303CrossRefGoogle Scholar
  16. Reetz MT, Zonta A et al (1996a) In situ fixation of lipase-containing hydrophobic sol–gel materials on sintered glass—highly efficient heterogeneous biocatalysts. Chem Commun 11:1397–1398CrossRefGoogle Scholar
  17. Reetz MT, Zonta A et al (1996b) Characterization of hydrophobic sol–gel materials containing entrapped lipases. J Sol Gel Sci Technol 7(1–2):35–43CrossRefGoogle Scholar
  18. Sharma P, Brown S et al (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123:471–485CrossRefGoogle Scholar
  19. Shimojima A, Kuroda K (2006) Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. Chem Rec 6(2):53–63CrossRefGoogle Scholar
  20. Stober W, Fink A et al (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62CrossRefGoogle Scholar
  21. Underhill RS, Jovanovic AV et al (2002) Oil-filled silica nanocapsules for lipophilic drug uptake: implications for drug detoxification therapy. Chem Mater 14(12):4919–4925CrossRefGoogle Scholar
  22. Zou H, Wu SS et al (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eoin Murray
    • 1
    • 2
  • Philip Born
    • 1
  • Anika Weber
    • 1
  • Tobias Kraus
    • 1
    Email author
  1. 1.Structure Formation GroupINM – Leibniz Institute for New MaterialsSaarbrüeckenGermany
  2. 2.Institute for Sports ResearchNanyang Technological UniversitySingaporeSingapore

Personalised recommendations