Advertisement

Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM)

  • Augustin Charvet
  • Sébastien Bau
  • Natalia Estefania Paez Coy
  • Denis Bémer
  • Dominique Thomas
Research Paper

Abstract

Nanoparticles are increasingly used in a wide variety of industries. As yet, their health effects are incompletely characterized. Effective density is among the key characteristics of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because it cannot be measured directly, different methods have been developed to accede to this parameter. The approach chosen in this study is based on the tandem measurement of airborne nanoparticles electrical mobility and mass (tandem differential mobility analyzer/aerosol particle mass analyzer), which major advantage lies in the absence of hypothesis contrary to the tandem differential mobility analyzer/electrical low pressure impactor (DMA/ELPI). The methodology was first applied to spherical model particles to validate the associated data treatment and protocol. In particular, the influence of APM rotational velocity and airflow rate were investigated with regards to the separation of multiply charged particles and electrometer signal. It emerged from experimental data that a compromise between separation efficiency and detection limit shall be found, depending on the nanoparticles to characterize. Accounting for their wide use in different domains, airborne nanoparticles of constantan®, copper, graphite, iron, silver and titanium, produced by spark discharge appear to be representative of ultrafine particles stemming from different industrial processes. In addition to their effective density, the mass-mobility exponents and primary particle diameters were determined for these particles, and found to agree well with published data.

Keywords

Agglomerates Airborne nanoparticles Effective density Spark discharge Primary particle diameter Particle size measurement Health effects 

Notes

Acknowledgments

The authors are grateful to the French Environment and Energy Management Agency (ADEME) for financial support for our project (agreement no. 11-81-C0084). We also thank Wenxin Sun for analysis of HRTEM micrographs as part of a collaboration between the Reactions and Chemical Engineering Laboratory (LRGP) and the French Institute for Radiological Protection and Nuclear Safety (IRSN).

References

  1. Anastasopol A, Pfeiffer TV, Schmidt-Ott A, Mulder FM, Eijt SWH (2011) Fractal disperse hydrogen sorption kinetics in spark discharge generated Mg/NbOx and Mg/Pd nanocomposites. Appl Phys Lett 99(194103):1–3Google Scholar
  2. Bau S, Witschger O (2013) A modular tool for analyzing cascade impactors data to improve exposure assessment to airborne nanomaterials. J Phys Conf Ser 429:012002. doi: 10.1088/1742-6596/429/1/012002 CrossRefGoogle Scholar
  3. Bau S, Witschger O, Gensdarmes F, Thomas D, Borra JP (2010a) Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator. J Nanopart Res 12:1989–1995CrossRefGoogle Scholar
  4. Bau S, Witschger O, Gensdarmes F, Rastoix O, Thomas D (2010b) A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols. Powder Technol 200:190–201CrossRefGoogle Scholar
  5. Bitterle E, Karg E, Schroeppel A, Kreyling WG, Tippe A, Ferron GA, Schmid O, Heyder J, Maier KL, Hofer T (2006) Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere 65:1784–1790CrossRefGoogle Scholar
  6. Boddu SR, Guti VR, Meyer RM, Ghosh TK, Tompson RV, Loyalka SK (2011) Carbon nanoparticle generation, collection and characterization using a spark generator and a thermophoretic deposition cell. Nucl Technol 173:318–326Google Scholar
  7. Broday DM, Rosenzweig R (2011) Deposition of fractal-like soot aggregates in the human respiratory tract. J Aerosol Sci 42:372–386CrossRefGoogle Scholar
  8. Brown JS, Kim CS, Reist PC, Zeman KL, Bennett WD (2000) Generation of radiolabeled “soot-like” ultrafine aerosols suitable for use in human inhalation studies. Aerosol Sci Technol 32:325–337CrossRefGoogle Scholar
  9. Byeon JH, Park JH, Hwang J (2008) Spark generation of monometallic and bimetallic aerosol nanoparticles. J Aerosol Sci 39:888–896CrossRefGoogle Scholar
  10. Dong Y, Hays MD, Smith ND, Kinsey JS (2004) Inverting cascade impactor data for size-resolved characterization of fine particulate source emissions. J Aerosol Sci 35:1497–1512CrossRefGoogle Scholar
  11. Eggersdorfer ML, Gröhn AJ, Sorensen CM, McMurry PH, Pratsinis SE (2012a) Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation. J Colloid Interface Sci 387:12–23CrossRefGoogle Scholar
  12. Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012b) Aggregate morphology evolution by sintering: number and diameter of primary particles. J Aerosol Sci 46:7–19CrossRefGoogle Scholar
  13. Ehara K, Hagwood C, Coakley KJ (1996) Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyzer. J Aerosol Sci 27:217–234CrossRefGoogle Scholar
  14. Evans DE, Harrison RM, Ayres JG (2003a) The generation and characterisation of elemental aerosols for human challenge studies. J Aerosol Sci 34:1023–1041CrossRefGoogle Scholar
  15. Evans DE, Harrison RM, Ayres JG (2003b) The generation and characterization of metallic and mixed element aerosols for human challenge studies. Aerosol Sci Technol 37:975–987CrossRefGoogle Scholar
  16. Ghazi R, Tjong H, Soewono A, Rogak SN, Olfert JS (2013) Mass, mobility, volatility, and morphology of soot particles generated by a McKenna and inverted burner. Aerosol Sci Technol 47:395–405CrossRefGoogle Scholar
  17. Helsper C, Molter W, Loffler F, Wadenpohl C, Kaufmann S, Wenninger G (1993) Investigations of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27:1271–1275CrossRefGoogle Scholar
  18. Horwath H, Gangl M (2003) A low-voltage spark generator for production of carbon particles. J Aerosol Sci 34:1581–1588CrossRefGoogle Scholar
  19. ICRP (1994) Human respiratory tract model for radiological protection. ICRP Publication 66. Ann ICRP 24:1–3Google Scholar
  20. Khalizov AF, Hogan B, Qiu C, Petersen EL, Zhang R (2012) Characterization of soot aerosol produced from combustion of propane in a shock tube. Aerosol Sci Technol 46:925–936CrossRefGoogle Scholar
  21. Kim JT, Chang JS (2005) Generation of metal oxide aerosol particles by a pulsed spark discharge technique. J Electrostat 63:911–916CrossRefGoogle Scholar
  22. Kim SC, Wang J, Shin WG, Scheckman JH, Pui DYH (2009a) Structural properties and filter loading characteristics of soot agglomerates. Aerosol Sci Technol 43:1033–1041CrossRefGoogle Scholar
  23. Kim SH, Mulholland GW, Zachariah MR (2009b) Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon 47:1297–1302CrossRefGoogle Scholar
  24. Kreyling WG, Semmler M, Erbe F, Mayer A, Takenaka S, Schultz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530CrossRefGoogle Scholar
  25. Kreyling WG, Semmler-Behnke M, Seitz J, Scymzak W, Wenk A, Mayer P, Takenaka S, Oberdörster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21:55–60CrossRefGoogle Scholar
  26. Ku BK, Kulkarni P (2012) Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area. J Aerosol Sci 47:100–110CrossRefGoogle Scholar
  27. Ku BK, Emery MS, Maynard AD, Stolzenburg MR, Mc Murry PH (2006) In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis. Nanotechnology 17:3613–3621CrossRefGoogle Scholar
  28. Mavrocordatos D, Perret D, Leppard GG (2007) Strategies and advances in the characterisation of environmental colloids by electron microscopy. In: Wilkinson KJ, Lead JR (eds) Environmental colloids: behaviour, structure and characterization. IUPAC series on analytical and physical chemistry of environmental systems, vol 10, pp 345–404Google Scholar
  29. Mc Murry PH, Wang X, Park K, Ehara K (2002) The relationship between mass and mobility for atmospheric particles: a new technique for measuring particle density. Aerosol Sci Technol 36:227–238CrossRefGoogle Scholar
  30. Olfert J, Collings N (2005) New method for particle mass classification—the Couette centrifugal particle mass analyzer. J Aerosol Sci 36:1338–1352CrossRefGoogle Scholar
  31. Park K, Kittelson DB, McMurry PH (2004) Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): relationships to particle mass and mobility. Aerosol Sci Technol 38:881–889CrossRefGoogle Scholar
  32. Rissler J, Messing ME, Malik AI, Nilsson PT, Nordin EZ, Bohgard M, Sanati M, Pagels JH (2013) Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Sci Technol 47:792–805CrossRefGoogle Scholar
  33. Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S, Heyder J (2004) Generation of ultrafine particles by spark discharging. Aerosol Sci Technol 38:228–235CrossRefGoogle Scholar
  34. Schmid O, Karg E, Hagen DE, Whitefield PD, Ferron GA (2007) On the effective density of non-spherical particles as derived from combined measurements of aerodynamic and mobility equivalent size. J Aerosol Sci 38:431–443CrossRefGoogle Scholar
  35. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19:639–642CrossRefGoogle Scholar
  36. Seipenbusch M, Weber AP, Schiel A, Kasper G (2003) Influence of gas atmosphere on restructuring and sintering kinetics of nickel and platinum aerosol nanoparticle agglomerates. J Aerosol Sci 34:1699–1709CrossRefGoogle Scholar
  37. Shapiro M, Vainshtein P, Dutcher D, Emery M, Stolzenburg M, Kittelson DB, McMurry PH (2012) Characterization of agglomerates by simultaneous measurement of mobility, vacuum aerodynamic diameter and mass. J Aerosol Sci 44:24–45CrossRefGoogle Scholar
  38. Skillas G, Burtscher H, Siegmann K, Baltensperger U (1999) Density and fractal-like dimension of particles from a laminar diffusion flame. J Colloid Interface Sci 217:269–274CrossRefGoogle Scholar
  39. Sorensen CM (2011) The mobility of fractal aggregates: a review. Aerosol Sci Technol 45:765–779CrossRefGoogle Scholar
  40. Szymczak W, Menzel N, Kreyling WG, Wittmaack K (2006) TOF–SIMS characterisation of spark-generated nanoparticles made from pairs of Ir–Ir and Ir–C electrodes. Int J Mass Spectrom 254:70–84CrossRefGoogle Scholar
  41. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009a) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332CrossRefGoogle Scholar
  42. Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2009b) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11:1209–1218CrossRefGoogle Scholar
  43. Tabrizi NS, Xu Q, van der Pers NM, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12:247–259CrossRefGoogle Scholar
  44. Van Gulijk C, Marijnissen JCM, Makkee M, Moulijn JA, Schmidt-Ott A (2004) Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. J Aerosol Sci 35:633–655CrossRefGoogle Scholar
  45. Virtanen A, Ristimäki J, Keskinen J (2004) Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci Technol 38:437–446CrossRefGoogle Scholar
  46. Vons VA, de Smet LCPM, Munao D, Evirgen A, Kelder EM, Schmidt-Ott A (2011) Silicon nanoparticles produced by spark discharge. J Nanopart Res 13:4867–4879CrossRefGoogle Scholar
  47. Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Augustin Charvet
    • 1
    • 2
  • Sébastien Bau
    • 3
  • Natalia Estefania Paez Coy
    • 1
    • 2
  • Denis Bémer
    • 3
  • Dominique Thomas
    • 1
    • 2
  1. 1.Université de Lorraine, Laboratoire Réactions et Génie des ProcédésNancyFrance
  2. 2.CNRS, Laboratoire Réactions et Génie des ProcédésNancyFrance
  3. 3.Institut National de Recherche et de Sécurité (INRS)Vandœuvre-lès-NancyFrance

Personalised recommendations