Raman spectroscopy for probing covalent functionalization of single-wall carbon nanotubes bundles with gold nanoparticles

  • Larissa OtuboEmail author
  • Odair Pastor Ferreira
  • Antonio Gomes Souza Filho
  • Oswaldo Luiz AlvesEmail author
Research Paper


A hybrid system made of single-wall carbon nanotube bundles (average diameter of approximately 20 nm and length of several tens of nanometers) highly covered with gold nanoparticles (average diameter of 5 nm) was prepared through the functionalization of the nanotube surface with 4,4′-thiobisbenzenethiol molecules followed by the anchoring of gold nanoparticles. The decoration of single wall carbon nanotubes with gold nanoparticles was performed using two different methods, named as ex situ and in situ, which refer to the gold reduction before or during the contact with the nanotubes, respectively. Transmission electron microscopy images showed that both methods lead to a successful decoration of the single wall carbon nanotube bundles, although different density of gold nanoparticles covering the bundles was observed to depend on the reaction methods. Resonance Raman spectroscopy data were used to follow the electronic changes of the carbon nanotubes after gold nanoparticles loading and confirmed the strong interactions of the gold nanoparticles with the 4,4′-thiobisbenzenethiol molecules and the carbon nanotubes. This interaction was probed in the Raman spectrum which unveiled a surface enhancement Raman effect of the thiol molecule Raman signals, not observed before the attachment of metallic nanoparticles onto 4,4′-thiobisbenzenethiol functionalized carbon nanotubes.


Carbon nanotubes 4,4′-Thiobisbenzenethiol Surface enhancement Raman spectroscopy Functionalization Hybrid nanosystems 



The authors acknowledge the LEM/LNLS (Electron Microscopy Laboratory/Brazilian Synchrotron Light Laboratory, Campinas) for the use of the microscope, the financial support from the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnlógico), CAPES, (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and prof. C. Collins for the critical reading of the manuscript. AGSF acknowledge the Visiting Research Grant 08/58194-7 from FAPESP. This is a contribution of the INOMAT and NanoBioSimes National Institutes (MCTI-CNPq). AGSF and OPF acknowledge funding from PRONEX–FUNCAP.


  1. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192. doi: 10.1002/smll.200400118 CrossRefGoogle Scholar
  2. Chen Y-C, Young RJ, Macpherson JV, Wilson NR (2007) Single-walled carbon nanotube networks decorated with silver nanoparticles: a novel graded SERS substrate. J Phys Chem C 111:16167–16173. doi: 10.1021/jp073771z CrossRefGoogle Scholar
  3. Chu H, Wang J, Ding L et al (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J Am Chem Soc 131:14310–14316. doi: 10.1021/ja9035972 CrossRefGoogle Scholar
  4. Costa S, Scheibe B, Rummeli M, Borowiak-Palen E (2009) Raman spectroscopy study on concentrated acid treated carbon nanotubes. Phys Status Solidi 246:2717–2720. doi: 10.1002/pssb.200982297 CrossRefGoogle Scholar
  5. de Souza Filho AG, Fagan SB (2007) Functionalization of carbon nanotubes. Quim Nov 30:1695–1703. doi: 10.1590/S0100-40422007000700037 CrossRefGoogle Scholar
  6. Ellis AV, Vijayamohanan K, Goswami R et al (2003) Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett 3:279–282. doi: 10.1021/nl025824o CrossRefGoogle Scholar
  7. Fagan SB, Filho AGS, Filho JM et al (2005) Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chem Phys Lett 406:54–59. doi: 10.1016/j.cplett.2005.02.091 CrossRefGoogle Scholar
  8. Farhat H, Son H, Samsonidze GG et al (2007) Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys Rev Lett 99:145506. doi: 10.1103/PhysRevLett.99.145506 CrossRefGoogle Scholar
  9. Furtado CA, Kim UJ, Gutierrez HR et al (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105. doi: 10.1021/ja039588a CrossRefGoogle Scholar
  10. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859. doi: 10.1002/1521-3773(20020603)41:11<1853:AID-ANIE1853>3.0.CO;2-N CrossRefGoogle Scholar
  11. Hou X, Wang L, Zhou F, Wang F (2009) High-density attachment of gold nanoparticles on functionalized multiwalled carbon nanotubes using ion exchange. Carbon N Y 47:1209–1213. doi: 10.1016/j.carbon.2008.12.004 CrossRefGoogle Scholar
  12. Hu J, Shi J, Li S et al (2005) Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites. Chem Phys Lett 401:352–356. doi: 10.1016/j.cplett.2004.11.075 CrossRefGoogle Scholar
  13. Jiang L, Gao L (2003) Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon N Y 41:2923–2929. doi: 10.1016/S0008-6223(03)00339-7 CrossRefGoogle Scholar
  14. Jiang K, Eitan A, Schadler LS et al (2003) Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett 3:275–277. doi: 10.1021/nl025914t CrossRefGoogle Scholar
  15. Kauffman DR, Star A (2007) Chemically induced potential barriers at the carbon nanotube–metal nanoparticle interface. Nano Lett 7:1863–1868. doi: 10.1021/nl070330i CrossRefGoogle Scholar
  16. Kauffman DR, Sorescu DC, Schofield DP et al (2010) Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett 10:958–963. doi: 10.1021/nl903888c CrossRefGoogle Scholar
  17. Kim YT, Mitani T (2006) Surface thiolation of carbon nanotubes as supports: a promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J Catal 238:394–401. doi: 10.1016/j.jcat.2005.12.020 CrossRefGoogle Scholar
  18. Kim UJ, Furtado CA, Liu X et al (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445. doi: 10.1021/ja052951o CrossRefGoogle Scholar
  19. Kim Y-T, Uruga T, Mitani T (2006) Formation of single Pt atoms on thiolated carbon nanotubes using a moderate and large-scale chemical approach. Adv Mater 18:2634–2638. doi: 10.1002/adma.200502019 CrossRefGoogle Scholar
  20. Kneipp K, Kneipp H, Itzkan I et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976. doi: 10.1021/cr980133r CrossRefGoogle Scholar
  21. Kumar S, Kaur I, Dharamvir K, Bharadwaj LM (2012) Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes. J Colloid Interface Sci 369:23–27. doi: 10.1016/j.jcis.2011.11.045 CrossRefGoogle Scholar
  22. Li D, Zhang Y, Jiang J, Li J (2003) Electroactive gold nanoparticles protected by 4-ferrocene thiophenol monolayer. J Colloid Interface Sci 264:109–113. doi: 10.1016/S0021-9797(03)00373-4 CrossRefGoogle Scholar
  23. Li J, Huang Y, Chen P, Chan-Park MB (2013) In situ charge-transfer-induced transition from metallic to semiconducting single-walled carbon nanotubes. Chem Mater 25:4464–4470. doi: 10.1021/cm401040d CrossRefGoogle Scholar
  24. Lim JK, Yun WS, Yoon M et al (2003) Selective thiolation of single-walled carbon nanotubes. Synth Met 139:521–527. doi: 10.1016/S0379-6779(03)00337-0 CrossRefGoogle Scholar
  25. Liu HW, Bhushan B, Eck W, Stadler V (2001) Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy. J Vac Sci Technol, A 19:1234–1240. doi: 10.1116/1.1353538 CrossRefGoogle Scholar
  26. Liu L, Wang TX, Li JX et al (2003) Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett 367:747–752. doi: 10.1016/S0009-2614(02)01789-X CrossRefGoogle Scholar
  27. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31. doi: 10.1016/S1369-7021(04)00080-X CrossRefGoogle Scholar
  28. Maciel IO, Anderson N, Pimenta MA et al (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7:878–883. doi: 10.1038/nmat2296 CrossRefGoogle Scholar
  29. Mubeen S, Zhang T, Yoo B et al (2007) Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J Phys Chem C 111:6321–6327. doi: 10.1021/jp067716m CrossRefGoogle Scholar
  30. Ou Y–Y, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036. doi: 10.1021/jp055920o CrossRefGoogle Scholar
  31. Peng H, Alemany LB, Margrave JL, Khabashesku VN (2003) Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 125:15174–15182. doi: 10.1021/ja037746s CrossRefGoogle Scholar
  32. Raghuveer MS, Agrawal S, Bishop N, Ramanath G (2006) Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem Mater 18:1390–1393. doi: 10.1021/cm051911g CrossRefGoogle Scholar
  33. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295. doi: 10.1021/cm048357f CrossRefGoogle Scholar
  34. Scolari M, Mews A, Fu N et al (2008) Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J Phys Chem C 112:391–396. doi: 10.1021/jp076190i CrossRefGoogle Scholar
  35. Sendroiu IE, Mertens SFL, Schiffrin DJ (2006) Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation. Phys Chem Chem Phys 8:1430–1436. doi: 10.1039/B518112G CrossRefGoogle Scholar
  36. Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Sidewall modification of multiwalled carbon nanotubes by Allium sativum (garlic) and its effect on the deposition of gold nanoparticles. Carbon N Y 56:309–316. doi: 10.1016/j.carbon.2013.01.021 CrossRefGoogle Scholar
  37. Star A, Joshi V, Skarupo S et al (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014–21020. doi: 10.1021/jp064371z CrossRefGoogle Scholar
  38. Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. TrAC-Trends Anal Chem 27:604–611. doi: 10.1016/j.trac.2008.03.012 CrossRefGoogle Scholar
  39. Voggu R, Pal S, Pati SK, Rao CNR (2008) Semiconductor to metal transition in SWNTs caused by interaction with gold and platinum nanoparticles. J Phys Condens Matter. doi: 10.1088/0953-8984/20/21/215211 Google Scholar
  40. Wang Y, Gan L, Chen H et al (2006) Structure and identity of 4,4‘-thiobisbenzenethiol self-assembled monolayers. J Phys Chem B 110:20418–20425. doi: 10.1021/jp062422m CrossRefGoogle Scholar
  41. Wang Y, Chen H, Dong S, Wang E (2008) Adsorption of 4,4′-thiobisbenzenethiol on silver surfaces: surface-enhanced Raman scattering study. J Raman Spec 39:389–394. doi: 10.1002/jrs.1836 CrossRefGoogle Scholar
  42. Weckenmann U, Mittler S, Naumann K, Fischer RA (2002) Ordered self-assembled monolayers of 4,4′-biphenyldithiol on polycrystalline silver: suppression of multilayer formation by addition of tri-n-butylphosphine. Langmuir 18:5479–5486. doi: 10.1021/la011857s CrossRefGoogle Scholar
  43. Wu B, Hu D, Kuang Y et al (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48:4751–4754. doi: 10.1002/anie.200900899 CrossRefGoogle Scholar
  44. Zanella R, Sandoval A, Santiago P et al (2006) New preparation method of gold nanoparticles on SiO2. J Phys Chem B 110:8559–8565. doi: 10.1021/jp060601y CrossRefGoogle Scholar
  45. Zhang R, Hummelgard M, Olin H (2009) Simple and efficient gold nanoparticles deposition on carbon nanotubes with controllable particle sizes. Mater Sci Eng, B 158:48–52. doi: 10.1016/j.mseb.2008.12.038 CrossRefGoogle Scholar
  46. Zhao L, Shingaya Y, Tomimoto H et al (2008) Functionalized carbon nanotubes for pH sensors based on SERS. J Mater Chem 18:4759–4761. doi: 10.1039/B809833F CrossRefGoogle Scholar
  47. Zhu H, Lu X, Li M et al (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446–1453. doi: 10.1016/j.talanta.2009.06.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.LQES – Laboratório de Química do Estado Sólido, Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Centro de Ciência e Tecnologia de MateriaisNuclear and Energy Research Institute (IPEN)São PauloBrazil
  3. 3.LaMFA – Laboratório de Materiais Funcionais Avançados, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations