Advertisement

NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents

  • Jinquan Li
  • Zijian Zhou
  • Jianghua Feng
  • Shuhui Cai
  • Jinhao Gao
  • Zhong Chen
Research Paper

Abstract

MnO-embedded iron oxide nanoparticles (MnIO-NPs) can be treated as potential dual-modal contrast agents. However, their overall bio-effects and potential toxicity remain unknown. In this study, the metabolic effects of MnIO-NPs (dosed at 1 and 5 mg Fe/kg) on Sprague–Dawley rats were investigated using metabonomic analysis, histopathological examination, and conventional biochemical analysis. The histological changes included a focal inflammation in the liver at high-dose and a slightly enlarged area of splenic white pulp after 48 h post-dose. Blood biochemical analysis showed that albumin, globulins, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and glucose changed distinctly compared to the control. The metabonomic analysis of body fluids (serum and urine) and tissues (liver, kidney, and spleen) indicated that MnIO-NPs induced metabolic perturbation in rats including energy, nucleotides, amino acids and phospholipid metabolisms. Besides, the variations of supportive nutrients: valine, leucine, isoleucine, nicotinamide adenine dinucleotide (phosphate), and nicotinamide, and the conjugation substrates: glycine, taurine, glutamine, glutathione, and methyl donors (formate, sarcosine, dimethylglycine, choline, and betaine) were involved in detoxification reaction of MnIO-NPs. The obtained information would provide identifiable ground for the candidate selection and optimization.

Keywords

Magnetic nanoparticles Biological effect Dual-modal contrast agent NMR Metabonomics 

Notes

Acknowledgments

We acknowledge the financial supports from the National Natural Science Foundation of China (81272581, 11174239, 81000662, and 21222106) and the Fundamental Research Funds for the Central Universities (2011121046) and NCET.

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11051_2014_2411_MOESM1_ESM.doc (899 kb)
Supplementary material 1 (DOC 899 kb)

References

  1. Achilefu S (2010) Introduction to concepts and strategies for molecular imaging. Chem Rev 110(5):2575–2578CrossRefGoogle Scholar
  2. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147CrossRefGoogle Scholar
  3. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573CrossRefGoogle Scholar
  4. Choi JS, Lee JH, Shin TH, Song HT, Kim EY, Cheon J (2010) Self-confirming “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc 132(32):11015–11117CrossRefGoogle Scholar
  5. Duarte IF (2011) Following dynamic biological processes through NMR-based metabonomics: a new tool in nanomedicine? J Control Release 153(1):34–39CrossRefGoogle Scholar
  6. Ekins S, Nikolsky Y, Nikolskaya T (2005) Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci 26(4):202–209CrossRefGoogle Scholar
  7. Feng J, Liu H, Bhakoo KK, Lu L, Chen Z (2011) A metabonomic analysis of organ specific response to USPIO administration. Biomaterials 32(27):6558–6569CrossRefGoogle Scholar
  8. Geenen S, Guallar-Hoyas C, Michopoulos F, Kenna JG, Kolaja KL, Westerhoff HV, Thomas P, Wilson ID (2011) HPLC-MS/MS methods for the quantitative analysis of 5-oxoproline (pyroglutamate) in rat plasma and hepatic cell line culture medium. J Pharm Biomed Anal 56(3):655–663CrossRefGoogle Scholar
  9. Hsiao IL, Huang YJ (2013) Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles. J Nanopart Res 15:1829CrossRefGoogle Scholar
  10. Huang SH, Juang RS (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res 13:4411–4430CrossRefGoogle Scholar
  11. Im GH, Kim SM, Lee D-G, Lee WJ, Lee JH, Lee IS (2013) Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1- and T2-weighted liver MRI. Biomaterials 34(8):2069–2076CrossRefGoogle Scholar
  12. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711CrossRefGoogle Scholar
  13. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733CrossRefGoogle Scholar
  14. Klee CB (1972) Metal activation of histidine ammonia-lyase. Metal ion-sulfhydryl group relationship. J Biol Chem 247(5):1398–1406Google Scholar
  15. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefGoogle Scholar
  16. Lee KS, Anisur RM, Kim KW, Kim WS, Park T-J, Kang EJ, Lee IS (2012) Seed size-dependent formation of Fe3O4/MnO hybrid nanocrystals: selective magnetically recyclable catalyst systems. Chem Mater 24(4):682–687CrossRefGoogle Scholar
  17. Li J, Zhao Z, Feng J, Gao J, Chen Z (2013) Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis. Nanotechnology 24:455102CrossRefGoogle Scholar
  18. Makharza S, Cirillo G, Bachmatiuk A, Ibrahim I, Ioannides N, Trzebicka B, Hampel S, Rümmeli MH (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanopart Res 15:2099CrossRefGoogle Scholar
  19. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRefGoogle Scholar
  20. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189CrossRefGoogle Scholar
  21. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–161CrossRefGoogle Scholar
  22. Norikura T, Kojima-Yuasa A, Opare Kennedy D, Matsui-Yuasa I (2007) Protective effect of gamma-aminobutyric acid (GABA) against cytotoxicity of ethanol in isolated rat hepatocytes involves modulations in cellular polyamine levels. Amino Acids 32(3):419–423CrossRefGoogle Scholar
  23. Pears MR, Cooper JD, Mitchison HM, Mortishire-Smith RJ, Pearce DA, Griffin JL (2005) High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease. J Biol Chem 280(52):42508–42514CrossRefGoogle Scholar
  24. Pellegatti M (2012) Preclinical in vivo ADME studies in drug development: a critical review. Expert Opin Drug Metab Toxicol 8(2):161–172CrossRefGoogle Scholar
  25. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85(2):809–822CrossRefGoogle Scholar
  26. Seifert J, Machkova Z (1988) Biosynthesis of pyrimidine nucleotides and level of cytochrome P-450 in rat liver and kidney after clofibrate administration (an in vivo study). J Cancer Res Clin Oncol 114(1):59–63CrossRefGoogle Scholar
  27. Seth PK, Husain R, Mushtaq M, Chandra SV (1977) Effect of manganese on neonatal rat: manganese concentration and enzymatic alterations in brain. Acta Pharmacol Toxicol 40(5):553–560CrossRefGoogle Scholar
  28. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279CrossRefGoogle Scholar
  29. Tan B, Qiu Y, Zou X, Chen T, Xie G, Cheng Y, Dong T, Zhao L, Feng B, Hu X, Xu LX, Zhao A, Zhang M, Cai G, Cai S, Zhou Z, Zheng M, Zhang Y, Jia W (2013) Metabonomics identifies serum metabolite markers of colorectal cancer. J Proteome Res 12(6):3000–3009CrossRefGoogle Scholar
  30. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355CrossRefGoogle Scholar
  31. Zira A, Kostidis S, Theocharis S, Sigala F, Engelsen SB, Andreadou I, Mikros E (2013) 1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration. Toxicology 7(303):115–124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Electronic ScienceXiamen UniversityXiamenChina
  2. 2.The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations