Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

  • Kristin Krüger
  • François Cossais
  • Horst Neve
  • Martin Klempt
Research Paper

Abstract

Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs’ exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs’ exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

Keywords

Titanium dioxide nanoparticles Inflammation NF-κB IL8 Intestinal epithelial cells Nanomedicine 

Notes

Acknowledgments

The authors sincerely thank Silvia Kaschner and Angela Back for their expert technical assistance. This work was supported by the German Federal Ministry of Food and Agriculture.

Supplementary material

11051_2014_2402_MOESM1_ESM.pdf (231 kb)
Supplementary material 1 (PDF 230 kb)

References

  1. Astarci E, Sade A, Cimen I et al (2012) The NF-κB target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells. FEBS J 279:2966–2986. doi: 10.1111/j.1742-4658.2012.08677.x CrossRefGoogle Scholar
  2. Barone F, De Berardis B, Bizzarri L et al (2011) Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO 2 nanoparticles on human colon carcinoma cells. J Phys Conf Ser 304:012047. doi: 10.1088/1742-6596/304/1/012047 CrossRefGoogle Scholar
  3. Chalew TEA, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29:101–116. doi: 10.1007/s10565-013-9241-6 CrossRefGoogle Scholar
  4. Chantret I, Barbat A, Dussaulx E et al (1988) Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res 48:1936–1942Google Scholar
  5. Chen P, Migita S, Kanehira K et al (2011) Development of sensor cells using NF-κB pathway activation for detection of nanoparticle-induced inflammation. Sensors 11:7219–7230. doi: 10.3390/s110707219 CrossRefGoogle Scholar
  6. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium extraction. Anal Biochem 162:156–159. doi: 10.1006/abio.1987.9999 CrossRefGoogle Scholar
  7. Elia G, De Marco A, Rossi A, Santoro G (1996) Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding by the heat shock transcription factor. J Biol Chem 271:16111–16118. doi: 10.1074/jbc.271.27.16111 CrossRefGoogle Scholar
  8. Flandez M, Guilmeau S, Blache P, Augenlicht LH (2008) KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res 314:3712–3723. doi: 10.1016/j.yexcr.2008.10.004 CrossRefGoogle Scholar
  9. Gerloff K, Albrecht C, Boots AW et al (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicol 3:355–364. doi: 10.3109/17435390903276933 CrossRefGoogle Scholar
  10. Gerloff K, Fenoglio I, Carella E et al (2012) Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 25:646–655. doi: 10.1021/tx200334k CrossRefGoogle Scholar
  11. Hsu RYC, Chan CHF, Spicer JD et al (2011) LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 71:1989–1998. doi: 10.1158/0008-5472.CAN-10-2833 CrossRefGoogle Scholar
  12. Jijon HB, Panenka WJ, Madsen KL, Parsons HG (2002) MAP kinases contribute to IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism. Am J Physiol Cell Physiol 283:C31–C41. doi: 10.1152/ajpcell.00113.2001 CrossRefGoogle Scholar
  13. Kagnoff MF, Eckmann L (1997) Perspectives series: host/pathogen interactions epithelial cells as sensors for microbial infection. J Clin Invest 100:6–10. doi: 10.1172/JCI119522 CrossRefGoogle Scholar
  14. Kaiserlian D, Rigal D, Abello J, Revillard JP (1991) Expression, function and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Eur J Immunol 21:2415–2421. doi: 10.1002/eji.1830211018 CrossRefGoogle Scholar
  15. Kim S, Domon-Dell C, Wang Q et al (2002) PTEN and TNF-α regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-κB–dependent pathway. Gastroenterology 123:1163–1178. doi: 10.1053/gast.2002.36043 CrossRefGoogle Scholar
  16. Koch S, Nusrat A (2012) The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 7:35–60. doi: 10.1146/annurev-pathol-011811-120905 CrossRefGoogle Scholar
  17. Koeneman BA, Zhang Y, Westerhoff P et al (2009) Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol 26:225–238. doi: 10.1007/s10565-009-9132-z CrossRefGoogle Scholar
  18. Lomer MCE, Harvey RSJ, Evans SM et al (2001) Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur J Gastroenterol Hepatol 13:101–106. doi: 10.1097/00042737-200102000-00003 CrossRefGoogle Scholar
  19. Lomer MCE, Thompson RPH, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61:123–130. doi: 10.1079/PNS2001134 CrossRefGoogle Scholar
  20. Lomer MCE, Hutchinson C, Volkert S et al (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Brit J Nutr 92:947. doi: 10.1079/BJN20041276 CrossRefGoogle Scholar
  21. Müzes G, Molnar B, Tulassay Z, Sipos F (2012) Changes of the cytokine profile in inflammatory bowel diseases. World J Gastroenterol 18:5848–5861. doi: 10.3748/wjg.v18.i41.5848 CrossRefGoogle Scholar
  22. Naik S, Kelly EJ, Meijer L et al (2001) Absence of toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Pediatr Gastr Nutr 32:449–453. doi: 10.1097/00005176-200104000-00011 CrossRefGoogle Scholar
  23. Nanthakumar NN, Fusunyan RD, Sanderson I, Walker W (2000) Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc Nat Acad Sci USA 97:6043–6048. doi: 10.1073/pnas.97.11.6043 CrossRefGoogle Scholar
  24. Nogueira CM, De Azevedo WM, Dagli MLZ et al (2012) Titanium dioxide induced inflammation in the small intestine. World J Gastroenterol 18:4729–4735. doi: 10.3748/wjg.v18.i34.4729 CrossRefGoogle Scholar
  25. Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B’ regulation and function. Cell Stress Chaperon 12:393–402. doi: 10.1379/CSC-278e.1 CrossRefGoogle Scholar
  26. Parikh AA, Salzman AL, Kane CD et al (1997) IL-6 production in human intestinal epithelial cells following stimulation with IL-1 beta is associated with activation of the transcription factor NF-kappa B. J Surg Res 69:139–144. doi: 10.1006/jsre.1997.5061 CrossRefGoogle Scholar
  27. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  28. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi: 10.1093/nar/30.9.e36 CrossRefGoogle Scholar
  29. Powell JJ, Thoree V, Pele LC (2007) Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr 98(Suppl 1):S59–S63. doi: 10.1017/S0007114507832922 Google Scholar
  30. Rossi A, Coccia M, Trotta E et al (2012) Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PloS one 7:e31304. doi: 10.1371/journal.pone.0031304
  31. Rupp F, Haupt M, Klostermann H et al (2010) Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications. Acta Biomater 6:4566–4577. doi: 10.1016/j.actbio.2010.06.021 CrossRefGoogle Scholar
  32. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63. doi: 10.1016/S0006-2952(99)00299-3 CrossRefGoogle Scholar
  33. Schottelius AJG, Baldwin AS Jr (1999) The role for transcription factor NF-k B in intestinal inflammation. Int J Colorectal Dis 14:18–28. doi: 10.1007/s003840050178 CrossRefGoogle Scholar
  34. Schrand AM, Rahman MF, Hussain SM et al (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568. doi: 10.1002/wnan.103 CrossRefGoogle Scholar
  35. Sierro F, Dubois B, Coste a et al (2001) Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Nat Acad Sci USA 98:13722–13727. doi: 10.1073/pnas.241308598 CrossRefGoogle Scholar
  36. Singer II, Kawka DW, Schloemann S et al (1998) Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306. doi: 10.1016/S0016-5085(98)70196-9 CrossRefGoogle Scholar
  37. Van De Walle J, Hendrickx A, Romier B et al (2010) Inflammatory parameters in Caco-2 cells: effect of stimuli nature, concentration, combination and cell differentiation. Toxicol In Vitro 24:1441–1449. doi: 10.1016/j.tiv.2010.04.002 CrossRefGoogle Scholar
  38. Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788. doi: 10.1038/onc.2009.421 CrossRefGoogle Scholar
  39. Wang D, Dubois RN, Richmond A (2009) The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol 9:688–696. doi: 10.1016/j.coph.2009.08.003 CrossRefGoogle Scholar
  40. Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi: 10.1021/es204168d CrossRefGoogle Scholar
  41. Yin ZF, Wu L, Yang HG, Su YH (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15:4844–4858. doi: 10.1039/c3cp43938k CrossRefGoogle Scholar
  42. Yu Y, De Waele C, Chadee K (2001) Calcium-dependent interleukin-8 gene expression in T84 human colonic epithelial cells. Inflamm Res 50:220–226. doi: 10.1007/s000110050747 CrossRefGoogle Scholar
  43. Yu T, Chen X, Zhang W et al (2012) Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity. PLoS One 7:e32492. doi: 10.1371/journal.pone.0032492 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kristin Krüger
    • 1
  • François Cossais
    • 1
  • Horst Neve
    • 2
  • Martin Klempt
    • 1
  1. 1.Department of Safety and Quality of Milk and Fish ProductsMax Rubner-Institut (MRI), Federal Research Institute for Nutrition and FoodKielGermany
  2. 2.Department of Microbiology and BiotechnologyMax Rubner-Institut (MRI), Federal Research Institute for Nutrition and FoodKielGermany

Personalised recommendations