In situ functionalized fluorescent nanoparticles for efficient receptor coupling

  • Abbas Abdulameer Salman
  • Thorsten Heidelberg
Research Paper


An oligoethylene glycol-based propargyl phosphonate was applied to functionalize the surface of LaPO4:Ce,Tb nanoparticles in situ during the particle synthesis. The application of the surface modification reagent did not alter either size (5–7 nm in diameter) or morphology of the nanocrystalline core, but provided efficient anchor groups for subsequent coupling of a carbohydrate model receptor under mild reaction conditions. The biofunctionalization efficiency was quantified by thermogravimetric analysis and confirmed by a photometric assay. A calculation-based estimation suggested an average number of about 20 biomarkers per nanoparticles and a surface density of about 1 marker per 6 nm−2.


Nanoparticle synthesis Click chemistry-based particle coupling Biofunctionalization Nanocrystals Diagnostics and therapy 



Financial support for this work by the University of Malaya under research Grants RG026-09AFR, RP024-2012B, PS380-2010B, and RG264-13AFR is gratefully acknowledged.

Supplementary material

11051_2014_2399_MOESM1_ESM.pdf (845 kb)
Supporting Information: Experimental details on the synthesis of surface modification reagents and the receptor model, including images of spectra to support the purity of the reagents, are provided as supplementary material. Besides, the material also includes experimental data for SAXS and the phenolic carbohydrate assay, as well as details on the calculation-based estimation of the receptor loading density on the coupled nanoparticle 11. (PDF 844 kb)


  1. Bernadi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger K-E, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond J-L, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Iberty A (2013) Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 42:4709–4727CrossRefGoogle Scholar
  2. Berowitz PT, Baum K (1981) Reactions of 2-fluoro-2-nitro-1,3-propandiol, p-toluenesulfonates. J Org Chem 46:3816–3819CrossRefGoogle Scholar
  3. Bo Z, Zhang X, Yi X, Yang M, Shen J, Rehn Y, Xi S (1997) The synthesis of dendrimers bearing alkyl chains and their behavior at air-water interface. Polym Bull 38:257–264CrossRefGoogle Scholar
  4. Boduszek B (1997) Aminophosphonic acids bearing heterocyclic moiety. Part 4. Synthesis of 2-pyridyl and 4-pyridylmethyl(amino)phosphonic acids. Phosphorus Sulfur Silicon 122:21–32CrossRefGoogle Scholar
  5. Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5:8488–8505CrossRefGoogle Scholar
  6. Chen JC, Luo WQ, Wang HD, Xiang JM, Jin HF, Chen F, Cai ZW (2010) A versatile method for the preparation of end-functional polymers onto SiO2 nanoparticles by combination of surface-initiated ATRP and Huisgen [3 + 2] cycloaddition. Appl Surf Sci 256:2490–2495CrossRefGoogle Scholar
  7. Deussen H-J, Danielsen S, Breinholt J, Borchert TV (2000) A novel biotinylated suicide inhibitor for directed molecular evolution of lipolytic enzymes. Bioorg Med Chem 8:507–513CrossRefGoogle Scholar
  8. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935CrossRefGoogle Scholar
  9. Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435CrossRefGoogle Scholar
  10. Gruar RI, Tighe CJ, Muir J, Kittler JT, Wodjak M, Kenyon AJ, Darr JA (2012) Continous hydrothermal synthesis of surface-functionalised nanophosphors for biological imaging. RSC Adv 2:10037–10047CrossRefGoogle Scholar
  11. He H, Gao C (2011) Click chemistry on nano-surfaces. Curr Org Chem 15:3667–3691CrossRefGoogle Scholar
  12. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polymer Sci 38:1232–1261CrossRefGoogle Scholar
  13. Kohler B, Bohmann K, Hoheisel W, Haase M, Haubold S, Meyer C, Heidelberg T (2006) Production and use of in situ-modified nanoparticles. US2006/0063155 A1Google Scholar
  14. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  15. Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloaddition. Angew Chem Int Ed 50:8794–8804CrossRefGoogle Scholar
  16. Lane SM, Monot J, Petit M, Tellier C, Bujoli B, Talham DR (2008) Poly(dG) spacers lead to increased surface coverage of DNA probes: an XPS study of oligonucleotide binding to zirconium phosphate modified surfaces. Langmuir 24:7394–7399CrossRefGoogle Scholar
  17. Lehmann O, Meyssamy H, Kompe K, Schnablegger H, Haase M (2003) Synthesis, growth and Er3+ luminescence of lanthanide phosphate nanoparticles. J Phys Chem B 107:7449–7453CrossRefGoogle Scholar
  18. Liang L, Astruc D (2011) The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) ‘click’ reaction and its applications. An overview. Coord Chem Rev 255:2933–2945CrossRefGoogle Scholar
  19. Lin M, Zhao Y, Wang SQ, Liu M, Duan ZF, Chen YM, Li F, Xu F, Lu TJ (2012) Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv 30:1551–1561CrossRefGoogle Scholar
  20. Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958CrossRefGoogle Scholar
  21. Lu X, Lv X, Sun Z, Zheng Y (2008) Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polymer J 44:2476–2481CrossRefGoogle Scholar
  22. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opinion Chem Biol 14:582–596CrossRefGoogle Scholar
  23. Moni L, Rossetti S, Marra A, Dondoni A (2010) Immobilization of calix[4]arene-based glycoclusters on TiO2 nanoparticles via Cu(I)-catalyzed azide-alkyne coupling. Chem Commun 46:475–477CrossRefGoogle Scholar
  24. Nguan HS, Heidelberg T, Hashim R, Tiddy GJT (2010) Quantitative analysis of the packing of alkyl glycosides: a comparison of linear and branched alkyl chains. Liq Cryst 37:1205–1213CrossRefGoogle Scholar
  25. Norberg O, Deng L, Yan M, Ramström O (2009) Photo-click immobilization of carbohydrates on polymeric surfaces—a quick method to functionalize surfaces for biomolecular recognition studies. Bioconjugate Chem 20:2364–2370CrossRefGoogle Scholar
  26. Queffelec C, Petit M, Janvier P, Knight DA, Bujoli B (2012) Surface modification using phosphonic acids and esters. Chem Rev 112:3777–3807CrossRefGoogle Scholar
  27. Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. J Phys Chem B 104:2824–2828CrossRefGoogle Scholar
  28. Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M (2001) Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce, Tb nanocrystals. Angew Chem Int Ed Engl 40:573–576CrossRefGoogle Scholar
  29. Saha SK, Brewer OF (1994) Determination of concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res 254:157–167CrossRefGoogle Scholar
  30. Sahiner N, Sagbas S (2014) The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. J Power Sources 246:55–62CrossRefGoogle Scholar
  31. Salman AA, Heidelberg T, unpublished results currently submitted for publicationGoogle Scholar
  32. Sapsford KE, Algar WR, Berti L, Boeneman Gemmill K, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRefGoogle Scholar
  33. Sreenivasan VKA, Zvyagin AV, Goldys EM (2013) Luminescent nanoparticles and their applications in life sciences. J Phys Condens Matter 25:194101–194123CrossRefGoogle Scholar
  34. Sun M, Li Z-J, Liu C-L, Fu H-X, Shen J-S, Zhang H-W (2014) Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J Lumin 145:838–842CrossRefGoogle Scholar
  35. Tasdelen MA, Camp WV, Goethals E, Dubois P, Prez FD, Yagci Y (2008) Polytetrahydrofuran/clay nanocomposites by in situ polymerization and ‘click’ chemistry processes. Macromolecules 41:6035–6040CrossRefGoogle Scholar
  36. Vill V, Thiem J, Fischer B (1986) Studies on liquid-crystalline glycosides. Liq Cryst 6:349–356CrossRefGoogle Scholar
  37. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Towards the synthesis of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128:11356–11357CrossRefGoogle Scholar
  38. Zalipsky S (1995) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182CrossRefGoogle Scholar
  39. Zhao J, Liu Y, Park H-J, Boggs JM, Basu A (2012) Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate–carbohydrate interaction using model systems and cellular binding sites. Bioconjugate Chem 23:1166–1173CrossRefGoogle Scholar
  40. Zhou Y, Wang S, Xie K, Dai Y, Ma W (2011) Versatile functionalization of Fe3O4 nanoparticles via RAFT polymerization and click chemistry. Appl Surf Sci 257:10384–10389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations