Advertisement

Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles

  • Trevor P. AlmeidaEmail author
  • Fabrizio MoroEmail author
  • Michael W. Fay
  • Yanqiu Zhu
  • Paul D. Brown
Research Paper

Abstract

Core/shell hetero-nanostructures of hydrothermally synthesised cobalt and nickel ferrites are shown to exhibit novel magnetic properties. The compositions and phase distributions of homogeneous Co0.5Ni0.5Fe2O4, and core/shell NiFe2O4-Core/CoFe2O4-Shell and CoFe2O4-Core/NiFe2O4-Shell nanoparticles (NPs) are confirmed using high-resolution transmission electron microscopy and electron energy loss spectroscopy. SQUID magnetometry investigations demonstrate that, at room temperature, homogeneous Co0.5Ni0.5Fe2O4 NPs (~8 nm in diameter) are in the super-paramagnetic state, the magnetisation of NiFe2O4-Core/CoFe2O4-Shell NPs (~11 nm in diameter) is partially blocked, whilst CoFe2O4-Core/NiFe2O4-Shell NPs (~11 nm in diameter) are in a blocked state. In particular, NiFe2O4-Core/CoFe2O4-Shell NPs exhibit twice the out-of-phase χ″ susceptibility of CoFe2O4-Core/NiFe2O4-Shell NPs, being dominated by the magnetisation of the core ferrite phase. Hence, when exposed to a high-frequency magnetic field, it is considered that the high χ″ susceptibility of NiFe2O4-Core/CoFe2O4-Shell NPs will promote large magnetically induced heating effects, making these core/shell NPs strong candidates for hyperthermia applications.

Keywords

Hydrothermal synthesis Spinel ferrites Core/shell nanoparticles Magnetic properties 

Notes

Acknowledgment

The authors would like to thank the Engineering and Physical Science research Council for financial support.

Supplementary material

11051_2014_2395_MOESM1_ESM.pdf (800 kb)
Supplementary material 1 (PDF 800 kb)

References

  1. Almeida TP, Fay MW, Zhu Y, Brown PD (2012a) Hydrothermal synthesis and near in situ analysis of NiFe2O4 nanoparticles. J Nanosci Nanotechnol 12:8296–8299Google Scholar
  2. Almeida TP, Fay MW, Zhu Y, Brown PD (2012b) Controlling role of pH and temperature on CoFe2O4 nanostructures produced by hydrothermal synthesis. J Nanosci Nanotechnol 12:8300–8304Google Scholar
  3. Almeida TP, Fay MW, Zhu Y, Brown PD (2012c) Hydrothermal synthesis of mixed cobalt–nickel ferrite nanoparticles. J Phys Conf Ser 371:012074CrossRefGoogle Scholar
  4. Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villian F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192CrossRefGoogle Scholar
  5. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (2003) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482CrossRefGoogle Scholar
  6. Bucko MM, Haberko K (2007) Hydrothermal synthesis of nickel ferrite powders their properties and sintering. J Eur Ceram Soc 27:723–727CrossRefGoogle Scholar
  7. Chen D, Chen D, Jiao X, Zhao Y, He M (2003) Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol 133:247–250CrossRefGoogle Scholar
  8. Cheng Y, Zheng Y, Wang Y, Bao F, Qin Y (2005) Synthesis and magnetic properties of nickel ferrite nano-octahedra. J Solid State Chem 178:2394–2397CrossRefGoogle Scholar
  9. Dormann JL, Fiorani D, Tronc E (2007) Magnetic relaxation in fine-particle systems. Adv Chem Phys 98:283–294Google Scholar
  10. Garcia-Otero J, Porto M, Rivas J, Bunde A (1999) Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: a Monte Carlo study. J Appl Phys 85:2287–2292CrossRefGoogle Scholar
  11. George M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195CrossRefGoogle Scholar
  12. Gomes JA, Sousa MH, Tourinho FA, Aquino R, Da Silva GJ, Depeyrot J, Dubois E, Perzynski R (2008) Synthesis of core–shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112:6220–6227CrossRefGoogle Scholar
  13. Gong Y-X, Zhen L, Jiang J-T, Xu C-Y, Wang W-S, Shao W-Z (2011) Synthesis of Fe–ferrite composite nanotubes with excellent microwave absorption performance. CrystEngComm 13:6839CrossRefGoogle Scholar
  14. Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME (2008) Evaluation of iron–cobalt/ferrite core–shell nanoparticles for cancer thermotherapy. J Appl Phys 103:07A307CrossRefGoogle Scholar
  15. Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934CrossRefGoogle Scholar
  16. Kambale RC, Shaikh PA, Harale NS, Bilur VA, Kolekar YD, Bhosale CH, Rajpure KY (2010) Structural and magnetic properties of Co1−xMnxFe2O4 (0 ≤ x ≤ 0.4) spinel ferrites synthesized by combustion route. J Alloys Compd 490:568–571CrossRefGoogle Scholar
  17. Kim D-H, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396CrossRefGoogle Scholar
  18. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRefGoogle Scholar
  19. Lee EW, Bishop JEL (1966) Magnetic behaviour of single-domain particles. Proc Phys Soc Lond 89:661CrossRefGoogle Scholar
  20. Li X-H, Zhang D-H, Chen J-S (2006) Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. JACS Commun 128:8382–8383CrossRefGoogle Scholar
  21. Li X-H, Xu C-L, Han X-H, Qiao L, Wang T, Li F-S (2010) Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5:1039–1044CrossRefGoogle Scholar
  22. Liu Q, Sun J, Long H, Sun X, Zhong X, Xu Z (2008) Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles. Mater Chem Phys 108:269–273CrossRefGoogle Scholar
  23. Maaz K, Mumtaz A, Hasanain SK, Bertino MF (2010) Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J Magn Magn Mater 322:2199–2202CrossRefGoogle Scholar
  24. Makovec D, Kosak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water–CTAB–hexanol microemulsions. Nanotechnology 15:S160–S166CrossRefGoogle Scholar
  25. Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65CrossRefGoogle Scholar
  26. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267CrossRefGoogle Scholar
  27. Moumen N, Pileni MP (1996) Control of the size of cobalt ferrite magnetic fluid. J Phys Chem 100:1867–1873CrossRefGoogle Scholar
  28. Pankhurst QA, Connely J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  29. Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248CrossRefGoogle Scholar
  30. Pollert E, Veverka P, Veverka M, Kaman O, Zaveta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37:1–4CrossRefGoogle Scholar
  31. Qi Y, Yang Y, Zhao X, Liu X, Wu P, Zhang F, Xu S (2010) Controllable magnetic properties of cobalt ferrite particles derived from layered double hydroxide precursors. Particuology 8:207–211CrossRefGoogle Scholar
  32. Rezlescu E, Iftimie N, Popa PD, Rezlescu N (2005) Porous nickel ferrite for semiconducting gas sensor. J Phys Conf Ser 15:51–54CrossRefGoogle Scholar
  33. Sepelak V, Baabe D, Mienert D, Schultze D, Krumeich F, Litterst FJ, Becker KD (2003) Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J Magn Magn Mater 257:377–386CrossRefGoogle Scholar
  34. Sepelak V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Campbell SJ, Becker KD (2007) Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behaviour. J Phys Chem C 111:5026–5033CrossRefGoogle Scholar
  35. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRefGoogle Scholar
  36. Shen XQ, Xiang J, Song FZ, Liu MQ (2010) Characterization and magnetic properties of electrospun Co1−xZnxFe2O4 nanofibers. Appl Phys A 99:189–195CrossRefGoogle Scholar
  37. Shigeoka D, Katayanagi H, Moro Y, Kimura S, Mashino T, Ichiyanagi Y (2010a) Production of Co–Ti ferrite nanoparticles for use as agents in hyperthermia treatment. J Phys Conf Ser 200:122002CrossRefGoogle Scholar
  38. Shigeoka D, Katayanagi H, Moro Y, Kimura S, Mashino T, Hiroki T, Ichiyanagi Y (2010b) AC magnetic susceptibility of Co–Ti–Zn ferrite nanoparticles for hyperthermia agents. Nanoelectron Conf Proc 3:904Google Scholar
  39. Sileo EE, Rodenas LG, Paiva-Santos CO, Stephens PW, Morando PJ, Blesa MA (2006) Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites. J Solid State Chem 179:2237–2244CrossRefGoogle Scholar
  40. Singhal S, Singh J, Barthwal SK, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−xNixFe2O4). J Solid State Chem 178:3183–3189CrossRefGoogle Scholar
  41. Soler MAG, Lima ECD, da Silva W, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK, Oliviera AC, Novak MA, Morais PC (2007) Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23:9611–9617CrossRefGoogle Scholar
  42. Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134:10182–10190CrossRefGoogle Scholar
  43. Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behaviour of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater Chem Phys 118:174–180CrossRefGoogle Scholar
  44. Stoner EC, Wohlfarth EPA (1948) Mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599–642CrossRefGoogle Scholar
  45. Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji R, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496CrossRefGoogle Scholar
  46. Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, Goya GF (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys Conf Ser 200:072101CrossRefGoogle Scholar
  47. Tung LD, Kolesnichenko V, Caruntu D, Chou NH, O’Connor CJ, Spinu L (2003) Magnetic properties of ultrafine cobalt ferrite particles. J Appl Phys 93:7486–7488CrossRefGoogle Scholar
  48. Vazquez-Vazquez C, Lopez-Quintela MA, Bujan-Nunez MC, Rivas J (2011) Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 13:1663–1676CrossRefGoogle Scholar
  49. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite–silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743CrossRefGoogle Scholar
  50. Wang L, Ren J, Wang Y, Liu X, Wang L (2010) Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization. J Alloys Compd 490:656–660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Materials, Mechanics and Structures, Department of Mechanical, Materials and Manufacturing Engineering, Faculty of EngineeringUniversity of NottinghamNottinghamUK
  2. 2.Department of Earth Science and EngineeringImperial College LondonLondonUK
  3. 3.School of ChemistryUniversity of NottinghamNottinghamUK
  4. 4.Nottingham Nanotechnology and Nanoscience CentreUniversity of NottinghamNottinghamUK
  5. 5.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations