Advertisement

Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

  • Vidyadhar Singh
  • Panagiotis Grammatikopoulos
  • Cathal Cassidy
  • Maria Benelmekki
  • Murtaza Bohra
  • Zafer Hawash
  • Kenneth W. Baughman
  • Mukhles Sowwan
Research Paper

Abstract

Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

Graphical Abstract

Design and assembly of tantalum nanoparticle porous films with a graded oxidation profile perpendicular to the substrate surface were fabricated by magnetron-sputter inert-gas aggregation system. At the top-most layers of the film, the larger free-surface areas of nanoparticles enable the formation of thermodynamically stable Ta2O5.

Keywords

Tantalum Nanoparticles Coalescence Nanoporous film Graded oxidation XPS 

Notes

Acknowledgments

We thank Adam Roberts (Kratos Analytical, UK) for the XPS experiments, and Dr. Chhagan Lal for helpful discussion on XPS results and Dr. Steven Aird for editing the manuscript.

Supplementary material

11051_2014_2373_MOESM1_ESM.doc (448 kb)
Supplementary material 1 (DOC 448 kb)

References

  1. Alers GB, Werder DJ, Chabal Y, Lu HC, Gusev EP, Garfunkel E, Gustafsson T, Urdahl RS (2007) Intermixing at the tantalum oxide/silicon interface in gate dielectric structures. Appl Phys Lett 73:1517–1519CrossRefGoogle Scholar
  2. Arcidiacono S, Bieri NR, Poulikakos D, Grigoropoulos CP (2004) On the coalescence of gold nanoparticles. Int J Multiph Flow 30:979–994CrossRefGoogle Scholar
  3. Atanassova E, Tyuliev G, Paskaleva A, Spassov D, Kostov K (2004) XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl Surf Sci 225:86–99CrossRefGoogle Scholar
  4. Balaji T, Govindaiah R, Sharma MK, Purushotham Y, Kumar A, Prakash TL (2002) Sintering and electrical properties of tantalum anodes for capacitor applications. Mater Lett 56:560–563CrossRefGoogle Scholar
  5. Barr JL, Axelbaum RL, Macias ME (2006) Processing salt-encapsulated tantalum nanoparticles for high purity, ultra high surface area applications. J Nanopart Res 8:11–22CrossRefGoogle Scholar
  6. Bartic C, Jansen H, Campitelli A, Borghs S (2002) Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org Electron 3:65–72CrossRefGoogle Scholar
  7. Bonitatibus PJ, Torres AS, Kandapallil B, Lee BD, Goddard GD, Colborn RE, Marino ME (2012) Preclinical assessment of a zwitterionic tantalum oxide nanoparticle X-ray contrast agent. ACS Nano 6:6650–6658CrossRefGoogle Scholar
  8. Chaneliere C, Autran JL, Devine RAB, Balland B (1998) Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater Sci Eng R 22:269–322CrossRefGoogle Scholar
  9. Chang JP, Opila RL, Alers GB, Steigerwald ML, Lu HC, Garfunkel E, Gustafsson T (1999) Interfacial reaction and thermal stability of Ta1O5/TiN for metal electrode capacitors. Solid State Technol 42:43–48. [http://cat.inist.fr/?aModele=afficheN&cpsidt=1672534]Google Scholar
  10. Cheng H, Mao C (2003) The effect of substrate temperature on the physical properties of tantalum oxide thin films grown by reactive radio-frequency sputtering. Mater Res Bull 38:1841–1849CrossRefGoogle Scholar
  11. Das B, Banerjee A (2007) Implementation of complex nanosystems using a versatile ultrahigh vacuum nonlithographic technique. Nanotechnology 18:445202CrossRefGoogle Scholar
  12. Ding F, Rosen A, Bolton K (2004) Size dependence of the coalescence and melting of iron clusters: a molecular-dynamics study. Phys Rev B 70:075416CrossRefGoogle Scholar
  13. Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012) Aggregate morphology evolution by sintering: number and diameter of primary particles. J Aerosol Sci 46:7–19CrossRefGoogle Scholar
  14. El-Sayed HA, Birss VI (2009) controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes. Nano Lett 9:1350–1355CrossRefGoogle Scholar
  15. Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals. Phil Mag A 50:45–55CrossRefGoogle Scholar
  16. Gale JD (1997) GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc Faraday Trans 93:629–637CrossRefGoogle Scholar
  17. Gonçalves RV, Migowski P, Wender H, Eberhardt D, Weibel DE, Sonaglio FC, Zapata MJM, Dupont J, Feil AF, Teixeira SR (2012) Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J Phys Chem C 116:14022–14030CrossRefGoogle Scholar
  18. Guo G, Huang J (2011) Preparation of mesoporous tantalum oxide and its enhanced photocatalytic activity. Mater Lett 65:64–66CrossRefGoogle Scholar
  19. Han Y, Zhou JH, Zhang L, Xu KW (2011) A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold. Nanotechnology 22:275603CrossRefGoogle Scholar
  20. Hollaway PH, Nelson GS (1979) Preferential sputtering of Ta2O5 by argon ions. J Vac Sci Technol 16:793–796CrossRefGoogle Scholar
  21. Kart HH, Wang G, Karaman I, Cagin T (2009) Molecular dynamics study of the coalescence of equal and unequal sized Cu nanoparticles. Int J Mod Phys C 20:179–196CrossRefGoogle Scholar
  22. Kerrec O, Devilliers D, Groult H, Marcus P (1998) Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mat Sci Eng B 55:134–142CrossRefGoogle Scholar
  23. Lee SL, Cipollo M, Windover D, Rickard C (1999) Analysis of magnetron-sputtered tantalum coatings versus electrochemically deposited tantalum from molten salt. Surf Coat Technol 120–121:44–52Google Scholar
  24. Leng YX, Chen JY, Yang P, Sun H, Wang J, Huang N (2006) The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition. Nucl Instrum Meth B 242:30–32CrossRefGoogle Scholar
  25. Levine BR, Sporer S, Poggie RA, Valle CJD, Jacobs JJ (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681CrossRefGoogle Scholar
  26. Lewis LJ, Jensen P, Barrat JL (1997) Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56:2248–2257CrossRefGoogle Scholar
  27. Li Y, Zhang S, Guo L, Dong M, Liu B, Mamdouh W (2012) Collagen coated tantalum substrate for cell proliferation. Colloids Surf, B 95:10–15CrossRefGoogle Scholar
  28. Lin J, Masaaki N, Tsukune A, Yamada M (1999) Ta2O5 thin films with exceptionally high dielectric constant. Appl Phys Lett 74:2370CrossRefGoogle Scholar
  29. Moo JGS, Awaludin Z, Okajima T, Ohsaka T (2013) An XPS depth-profile study on electrochemically deposited TaOx. J Solid State Electrochem 17:3115–3123CrossRefGoogle Scholar
  30. Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133:5508–5515CrossRefGoogle Scholar
  31. Palmer RE, Pratontep S, Boyen HG (2003) Nanostructured surfaces from size-selected clusters. Nature Mater 2:443–448CrossRefGoogle Scholar
  32. Popoka VN, Barke I, Campbell EEB, Meiwes-Broer KH (2011) Cluster–surface interaction: from soft landing to implantation. Surf Sci Rep 66:347–377CrossRefGoogle Scholar
  33. Seman M, Robbins JJ, Agarwal S, Wolden CA (2007) Self-limiting growth of tantalum oxide thin films by pulsed plasma-enhanced chemical vapor deposition. Appl Phys Lett 90:131504CrossRefGoogle Scholar
  34. Seo J, Zhao L, Cha D, Takanabe K, Katayama M, Kubota J, Domen K (2013) Highly Dispersed TaOx Nanoparticles Prepared by Electrodeposition as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. J Phys Chem C 117:11635–11646CrossRefGoogle Scholar
  35. Singh V, Cassidy C, Bohra M, Galea A, Hawash Z, Sowwan M (2013) Surface morphology of films grown by size-selected Ta nanoparticles. Adv Mater Res 647:732–737CrossRefGoogle Scholar
  36. Stella K, Burstel D, Franzka S, Posth O, Diesing D (2009) Preparation and properties of thin amorphous tantalum films formed by small e-beam evaporators. J Phys D Appl Phys 42:135417CrossRefGoogle Scholar
  37. Zhang JY, Bie LJ, Dusastre V, Boyd IW (1998) Thin tantalum oxide films prepared by 172 nm Excimer lamp irradiation using sol–gel method. Thin Solid Films 318:252–256CrossRefGoogle Scholar
  38. Zhao SJ, Wang SQ, Ye HQ (2001) Coalescence of three silver nanoclusters: a molecular dynamics study. J Phys 13:8061–8069Google Scholar
  39. Zhu H, Averback RS (1996) Sintering processes of two nanoparticles: a study by molecular dynamics simulations. Phil Mag Lett 73:27–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vidyadhar Singh
    • 1
  • Panagiotis Grammatikopoulos
    • 1
  • Cathal Cassidy
    • 1
  • Maria Benelmekki
    • 1
  • Murtaza Bohra
    • 1
  • Zafer Hawash
    • 1
  • Kenneth W. Baughman
    • 1
  • Mukhles Sowwan
    • 1
    • 2
  1. 1.Nanoparticles by Design Unit Okinawa Institute of Science and Technology (OIST) Graduate University OkinawaJapan
  2. 2.Nanotechnology Research LaboratoryAl-Quds University East JerusalemPalestine

Personalised recommendations