Functional silicon nanostructures derived from drying-mediated self-assembly of gold nanoparticles

  • Ashvini B. Deshmukh
  • Rami Reddy Devarapalli
  • Manjusha V. ShelkeEmail author
Research Paper


Self-assembly of nanoparticles is an efficient technique where nanobuilding blocks spontaneously organize into ordered structures by thermodynamic and other constraints. We demonstrate that multifunctional Silicon (Si) nanostructures with unique morphologies like sheets, plates and flakes can be etched chemically by taking an advantage of natural self-assembly of gold nanoparticles (AuNPs) characterized with drying kinetics under external stimuli. We further demonstrated antireflection properties of the as-synthesized Si nanostructures.


Si Nanostructures Self-assembly Gold nanoparticles Metal-assisted chemical etching Antireflective material 



Authors thank Mr. Pradip Pachfule and Dr. Rahul Banerjee for BET surface area analysis experiments.

Supplementary material

11051_2014_2372_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1088 kb)


  1. Branz HM, Yost VE, Ward S, Jones KM, To B, Stradins P (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121–231123CrossRefGoogle Scholar
  2. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  3. Chang SW, Chuang VP, Boles ST, Ross CA, Thompson CV (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal- assisted etching. Adv Funct Mater 19:2495–2500CrossRefGoogle Scholar
  4. Cui Z (2008) Springer: New York, pp 52–54, 72Google Scholar
  5. Dawood MK, Tripathy S, Dolmanan SB, Ng TH, Tan, Lam J (2012) Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J Appl Phys 112:073508–073509CrossRefGoogle Scholar
  6. Edelman OK, Sztrum-Vartash CG, Rabani E (2009) Coarse-grained lattice models for drying-mediated self-assembly of nanoparticles. J Mater Chem 19:2872–2876CrossRefGoogle Scholar
  7. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRefGoogle Scholar
  8. Gupta A, Denton JP, Mcnally H, Bashir R (2003) Novel fabrication method for surface micro-machined thin single-crystal silicon cantilever beams. Microelectromech Syst 12:185–192CrossRefGoogle Scholar
  9. Hildreth OJ, Lin W, Wong CP (2009) Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. ACS Nano 3:4033–4042CrossRefGoogle Scholar
  10. Hochbaum AI, Chen R, Delgado RD, Liang W, Carnett EC, Najarian M, Majumdar A, Yang P (2008) Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires. Nature 451:163–167CrossRefGoogle Scholar
  11. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRefGoogle Scholar
  12. Huang J, Chiam SY, Tan H, Wang HS, Chim WK (2010) Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching. Chem Mater 22:4111–4116CrossRefGoogle Scholar
  13. Hynninen AP, Thijssen JHJ, Vermolen ECM, Dijkstra M, Van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205CrossRefGoogle Scholar
  14. Jd Boor, Geyer N, Wittemann JV, G€osele U, Schmidt V (2010) Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 21:095302CrossRefGoogle Scholar
  15. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Wire textured, multi-crystalline Si solar cells created using self-assembled masks. Nat Mater 9:239–244CrossRefGoogle Scholar
  16. Kim J, Kim YH, Choi S-H, Lee W (2011a) Curved silicon nanowires with ribbon-like cross sections by metal-assisted chemical etching. ACS Nano 6:5242–5248CrossRefGoogle Scholar
  17. Kim J, Han H, Kim YH, Choi SH, Kim JC, Lee W (2011b) Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires. ACS Nano 5:3222–3229CrossRefGoogle Scholar
  18. Kolibal M, Konecny M, Ligmajer F, Skoda D, Vystavel T, Zlamal J, Varga P, Sikola T (2012) Guided assembly of gold colloidal nanoparticles on silicon substrates prepatterned by charged particle beams. ACS Nano 6:10098–10106CrossRefGoogle Scholar
  19. Megouda N, Hadjersi T, Piret G, Boukherroub R, Elkechai O (2009) Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution. Appl Surf Sci 255:6210–6216CrossRefGoogle Scholar
  20. Moore EB, Molinero V (2011) Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479:506–509CrossRefGoogle Scholar
  21. Morag A, Philosof-Mazor L, Volinsky R, Mentovich E, Richter S, Jelinek R (2011) Transparent conductive electrodes from Au nanoparticles in surfactant monolayer templates. Adv Mater 23:4327CrossRefGoogle Scholar
  22. Morton KJ, Nieberg G, Bai S, Chou SY (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19:1Google Scholar
  23. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRefGoogle Scholar
  24. Peng K, Lee ST (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23:198–215CrossRefGoogle Scholar
  25. Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006a) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRefGoogle Scholar
  26. Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee ST (2006b) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12:7942–7947CrossRefGoogle Scholar
  27. Peng K, Lu A, Zhang R, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035CrossRefGoogle Scholar
  28. Qu Y, Zhong X, Li Y, Liao L, Huangb Y, Duan X (2010) Photocatalytic properties of porous silicon nanowire. J Mater Chem 20:3590–3594CrossRefGoogle Scholar
  29. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274CrossRefGoogle Scholar
  30. Sivakov VA, Bronstrup G, Pecz B, Berger A, Radnoczi GZ, Krause M, Christiansen SH (2010) Realization of vertical and zigzag single crystalline silicon nanowire architectures. J Phys Chem C 114:3798–3803CrossRefGoogle Scholar
  31. Teki R, Datta MK, Krishnan R, ParkerT C, Lu TM, Kumta PN, Koratkar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5:2236–2242CrossRefGoogle Scholar
  32. Wang FY, Yang QD, Xu G, Lei NY, Tsang YK, Wong NB, Ho JC (2011) Highly active and enhanced photocatalytic silicon nanowire arrays. Nanoscale 3:3269–3276CrossRefGoogle Scholar
  33. Zamfir MR, Nguyen HT, Moyen E, Leeac YH, Pribat D (2013) Silicon nanowires for Li-based battery anodes: a review. J Mater Chem A 1:9566–9586CrossRefGoogle Scholar
  34. Zhang M-L, Peng K-Q, Fan X, Jie J-S, Zhang R-Q, Lee S-T, Wong N-B (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ashvini B. Deshmukh
    • 1
  • Rami Reddy Devarapalli
    • 1
    • 3
  • Manjusha V. Shelke
    • 1
    • 2
    • 3
    Email author
  1. 1.Physical and Materials Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia
  2. 2.CSIR-Network Institute for Solar EnergyCSIR-National Chemical LaboratoryPuneIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations