Synthesis of octahedral TiO2 single crystals with {101} facets from solid precursor with N2H4 as capping agent

  • Hui Jin
  • Jian Pan
  • Lianzhou WangEmail author
Research Paper


In this work, N2H4 was used as surface-capping agent for the first time to synthesize octahedral anatase TiO2 single crystals with dominant {101} facets from H0.68Ti1.83O4 solid precursor. The resultant particle size of {101} facet enriched TiO2 was around 100 nm. The function of N2H4 in the hydrothermal process is not only to provide a mild basic environment, but also to promote the growth of {101} surface because of its strong reducibility. The amount of N2H4 and precursor added in the solution is also investigated, and the result reveals that nearly 100 % {101} facet can be obtained only if N2H4 were added to a certain amount, while the concentration of precursor has no influence on the final result which means that this reaction can be largely scaled up. In oxygen evolution from photocatalytic water splitting, the {101} facets exhibited different performance using AgNO3 or (NH4)2Ce(NO3)6 as sacrificial agent.


TiO2·{101} facet Octahedral anatase Photocatalytic water splitting Nanocrystals 

Supplementary material

11051_2014_2352_MOESM1_ESM.doc (7.1 mb)
Supplementary material 1 (DOC 7288 kb)


  1. Amano F, Yasumoto T, Prieto-Mahaney O–O, Uchida S, Shibayama T, Ohtani B (2009) Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(iv) oxide. Chem Commun 17:2311–2313CrossRefGoogle Scholar
  2. Barnard AS, Curtiss LA (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261–1266CrossRefGoogle Scholar
  3. Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R et al (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233CrossRefGoogle Scholar
  4. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  5. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  6. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  7. D’Arienzo M, Carbajo J, Bahamonde A, Crippa M, Polizzi S, Scotti R et al (2011) Photogenerated defects in shape-controlled TiO2anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. J Am Chem Soc 133:17652–17661CrossRefGoogle Scholar
  8. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  9. Gomes Silva C, Juárez R, Marino T, Molinari R, García H (2010) Influence of excitation wavelength (uv or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602CrossRefGoogle Scholar
  10. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P et al (2012) Nonaqueous synthesis of TiO2nanocrystals using TiF4to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751–6761CrossRefGoogle Scholar
  11. Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y et al (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183CrossRefGoogle Scholar
  12. Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of biocl single-crystalline nanosheets. J Am Chem Soc 134:4473–4476CrossRefGoogle Scholar
  13. Li J, Xu D (2010) Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active 100 facets. Chem Commun 46:2301–2303CrossRefGoogle Scholar
  14. Lin H, Li L, Zhao M, Huang X, Chen X, Li G et al (2012) Synthesis of high-quality brookite TiO2single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134:8328–8331CrossRefGoogle Scholar
  15. Liu G, Wang L, Sun C, Yan X, Wang X, Chen Z et al (2009) Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chem Mater 21:1266–1274CrossRefGoogle Scholar
  16. Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQ et al (2010a) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46:755–757CrossRefGoogle Scholar
  17. Liu M, Piao L, Zhao L, Ju S, Yan Z, He T et al (2010b) Anatase TiO2 single crystals with exposed 001 and 110 facets: facile synthesis and enhanced photocatalysis. Chem Commun 46:1664–1666CrossRefGoogle Scholar
  18. Liu G, Yu JC, Lu GQ, Cheng H-M (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47:6763–6783CrossRefGoogle Scholar
  19. Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113:3062–3069CrossRefGoogle Scholar
  20. Murakami N, Katayama S, Nakamura M, Tsubota T, Ohno T (2010) Dependence of photocatalytic activity on aspect ratio of shape-controlled rutile titanium(IV) oxide nanorods. J Phys Chem C 115:419–424CrossRefGoogle Scholar
  21. Pan J, Liu G, Lu GQM, Cheng H-M (2011a) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137CrossRefGoogle Scholar
  22. Pan J, Wu X, Wang L, Liu G, Lu GQ, Cheng H-M (2011b) Synthesis of anatase TiO2 rods with dominant reactive 010 facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363CrossRefGoogle Scholar
  23. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A et al (2000) Shape control of CdSe nanocrystals. Nature 404:59–61CrossRefGoogle Scholar
  24. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H (1996) Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J Am Chem Soc 118:8329–8335CrossRefGoogle Scholar
  25. Tachikawa T, Majima T (2012) Photocatalytic oxidation surfaces on anatase TiO2 crystals revealed by single-particle chemiluminescence imaging. Chem Commun 48:3300–3302CrossRefGoogle Scholar
  26. Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133:7197–7204CrossRefGoogle Scholar
  27. Wang X, Liu G, Chen Z-G, Li F, Wang L, Lu GQ et al (2009) Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun 23:3452–3454CrossRefGoogle Scholar
  28. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065CrossRefGoogle Scholar
  29. Wu N, Wang J, Tafen DN, Wang H, Zheng J-G, Lewis JP et al (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132:6679–6685CrossRefGoogle Scholar
  30. Xiang J, Yu S-H, Liu B, Xu Y, Gen X, Ren L (2004) Shape controlled synthesis of PbS nanocrystals by a solvothermal–microemulsion approach. Inorg Chem Commun 7:572–575CrossRefGoogle Scholar
  31. Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of co catalysed by Co3O4 nanorods. Nature 458:746–749CrossRefGoogle Scholar
  32. Xiong Z, Zhao XS (2012) Nitrogen-doped titanate-anatase core–shell nanobelts with exposed 101 anatase facets and enhanced visible light photocatalytic activity. J Am Chem Soc 134:5754–5757CrossRefGoogle Scholar
  33. Yang HG, Zeng HC (2004) Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angew Chem 116:6056–6059CrossRefGoogle Scholar
  34. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  35. Yang X, Chen J, Gong L, Wu M, Yu JC (2009) Cross-medal arrays of Ta-doped rutile titania. J Am Chem Soc 131:12048–12049CrossRefGoogle Scholar
  36. Zhang D, Li G, Wang F, Yu JC (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12:1759–1763CrossRefGoogle Scholar
  37. Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY et al (2005) Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 127:6730–6736CrossRefGoogle Scholar
  38. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X et al (2012) Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem 124:6327–6330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversity of QueenslandSt LuciaAustralia
  2. 2.ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBNUniversity of QueenslandSt LuciaAustralia

Personalised recommendations