Stable zinc oxide nanoparticle dispersions in ionic liquids

  • Alexandra Wittmar
  • Devendraprakash Gautam
  • Carolin Schilling
  • Udo Dörfler
  • Wolfgang Mayer-Zaika
  • Markus Winterer
  • Mathias Ulbricht
Research Paper


The influence of the hydrophilicity and length of the cation alkyl chain in imidazolium-based ionic liquids on the dispersability of ZnO nanoparticles by ultrasound treatment was studied by dynamic light scattering and advanced rheology. ZnO nanopowder synthesized by chemical vapor synthesis was used in parallel with one commercially available material. Before preparation of the dispersion, the nanoparticles characteristics were determined by transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Hydrophilic ionic liquids dispersed all studied nanopowders better and in the series of hydrophilic ionic liquids, an improvement of the dispersion quality with increasing length of the alkyl chain of the cation was observed. Especially, for ionic liquids with short alkyl chain, additional factors like nanoparticle concentration in the dispersion and the period of the ultrasonic treatment had significant influence on the dispersion quality. Additionally, nanopowder characteristics (crystallite shape and size as well as the agglomeration level) influenced the dispersion quality. The results indicate that the studied ionic liquids are promising candidates for absorber media at the end of the gas phase synthesis reactor allowing the direct preparation of non-agglomerated nanoparticle dispersions without supplementary addition of dispersants and stabilizers.


Nanoparticle dispersions Ionic liquids Rheology Dynamic light scattering Zinc oxide Colloids 



The financial support through the NanoEnergieTechnikZentrum (NETZ), an application-focused research project partially financed by the state of North Rhine-Westphalia and the European Union, is kindly acknowledged.


  1. Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly ‘alive’. Chem Mater 22:85–91. doi: 10.1021/cm902240c CrossRefGoogle Scholar
  2. Ali M, Friedenberger N, Spasova M, Winterer M (2009) A novel approach for chemical vapor synthesis of ZnO nanocrystals: optimization of yield, crystallinity. Chem Vap Depos 15:192–198. doi: 10.1002/cvde.200806722 CrossRefGoogle Scholar
  3. Becheri A, Dürr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textile as UV-absorbers. J Nanopart Res 10:679–689. doi: 10.1007/s11051-007-9318-3 CrossRefGoogle Scholar
  4. Beek WJE, Wienk MM, Janssen RAJ (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mater 16:1009–1013. doi: 10.1002/adma.200306659 CrossRefGoogle Scholar
  5. Bonhôte P, Dias AP, Papagiorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRefGoogle Scholar
  6. Brayner R, Ferrari-Illion R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxilogical impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi: 10.1021/nl052326h CrossRefGoogle Scholar
  7. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106–1120. doi: 10.1002/cphc.200301017 CrossRefGoogle Scholar
  8. Chiappe C, Pieracini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 8:275–297. doi: 10.1002/poc.836 CrossRefGoogle Scholar
  9. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi: 10.1590/S0103-50532004000300002 CrossRefGoogle Scholar
  10. Dzyuba S, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and Bis(trifluoromethyl-sulfonyl)imides on physical properties of ionic liquids. Chem Phys Chem 3:161–166. doi: 10.1002/1439-7641(20020215 CrossRefGoogle Scholar
  11. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116. doi: 10.1039/B600519P CrossRefGoogle Scholar
  12. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Prefential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103. doi: 10.1088/0957-4484/19/29/295103 CrossRefGoogle Scholar
  13. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room temperature ionic liquids. Chem Rev 108:2238–2264. doi: 10.1021/cr068686 CrossRefGoogle Scholar
  14. Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanant C, Dutta J (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metastab Nanocryst Mater 23:27–30. doi: 10.4028/ CrossRefGoogle Scholar
  15. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144. doi: 10.1021/la7035949 CrossRefGoogle Scholar
  16. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29:511–535CrossRefGoogle Scholar
  17. Kubisa P (2009) Ionic liquids as solvents for polymerisation processes—progress and challenges. Prog Polym Sci 34:1333–1347. doi: 10.1016/j.progpolymsci.2009.09.001 CrossRefGoogle Scholar
  18. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448. doi: 10.1016/j.progpolymsci.2008.12.001 CrossRefGoogle Scholar
  19. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A (2002) Room temperature ionic liquids as replacement for conventional solvents—a review, Korean. J Chem Eng 19:357–362Google Scholar
  20. Ren X, Han D, Chen D, Tang F (2007) Lange-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation. Mater Res Bull 42:807–813. doi: 10.1016/j.materresbull.2006.08.030 CrossRefGoogle Scholar
  21. Schereen CW, Machado G, Dupont J, Fichtner PFP, Texeira SR (2003) Nanoscale Pt(O) particles prepared in imidazolium room temperature ionic liquids: synthesis from organometallic precursor, characterization and catalytic properties in hydrogenation reactions. Inorg Chem 42:4738–4743. doi: 10.1021/ic034453r CrossRefGoogle Scholar
  22. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356CrossRefGoogle Scholar
  23. Senthilkumar K, Senthilkumar O, Yamauchi K, Sato M, Morito S, Ohba T, Nakamura M, Fujita Y (2009) Preparation of ZnO nanoparticles for bio-imaging applications. Phys Status Solidi B 246:885–888. doi: 10.1002/pssb.200880606 CrossRefGoogle Scholar
  24. Seow ZLS, Wang ASW, Thovasi V, Rose R, Ramakrishna S, Ho GW (2009) Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology 20:045604. doi: 10.1089/0957-4484/20/4/045604 CrossRefGoogle Scholar
  25. Suslick KS, Price GJ (1999) Application of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295. doi: 10.1146/annurev.matsci.29.1.295 CrossRefGoogle Scholar
  26. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363. doi: 10.1039/B4400A CrossRefGoogle Scholar
  27. Tani T, Mädler L, Pratsinis SE (2002) Homogenous ZnO nanoparticles by flame spray pyrolysis. J Nanopart Res 4:337–343. doi: 10.1023/A:1021153419671 CrossRefGoogle Scholar
  28. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600. doi: 10.1021/jp047480r CrossRefGoogle Scholar
  29. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110. doi: 10.1021/jp044626d CrossRefGoogle Scholar
  30. Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221. doi: 10.1002/adma.200902184 CrossRefGoogle Scholar
  31. Ueno K, Watanabe M (2011) From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir 27:9105–9115. doi: 10.1021/la103942f CrossRefGoogle Scholar
  32. Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10:8617–8624. doi: 10.1166/jnn.2010.2483 CrossRefGoogle Scholar
  33. Welton T (1999) Room temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. doi: 10.1021/cr980032t CrossRefGoogle Scholar
  34. Wittmar A, Ulbricht M (2012) Dispersions of various titania nanoparticles in two different ionic liquids. Ind Eng Chem Res 51:8425–8433. doi: 10.1021/ie203010x CrossRefGoogle Scholar
  35. Wittmar A, Ruiz-Abad D, Ulbricht M (2012) Dispersion of silica nanoparticles in ionic liquids investigated with advanced rheology. J Nanopart Res 14:651–660. doi: 10.1007/s11051-011-0651-1 CrossRefGoogle Scholar
  36. Wittmar A, Gajda M, Gautam D, Dörfler U, Winterer M, Ulbricht M (2013) Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO2 nanopowders. J Nanopart Res 15:1463–1475. doi: 10.1007/s11051-013-1463-2 CrossRefGoogle Scholar
  37. Ye C, Liu W, Chen Y, Yu L (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245. doi: 10.1039/b106935g CrossRefGoogle Scholar
  38. Zhang H, Hong K, Mays JW (2002) Synthesis of block copolymers of styrene and methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules 35:5738–5741. doi: 10.1021/ma025518x CrossRefGoogle Scholar
  39. Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexandra Wittmar
    • 1
    • 4
  • Devendraprakash Gautam
    • 3
    • 4
  • Carolin Schilling
    • 3
  • Udo Dörfler
    • 3
    • 4
  • Wolfgang Mayer-Zaika
    • 2
  • Markus Winterer
    • 3
    • 4
  • Mathias Ulbricht
    • 1
    • 4
  1. 1.Lehrstuhl für Technische Chemie IIUniversität Duisburg-EssenEssenGermany
  2. 2.Anorganische ChemieUniversität Duisburg-EssenEssenGermany
  3. 3.Nanoparticle Process TechnologyUniversität Duisburg-EssenDuisburgGermany
  4. 4.CENIDE – Center for Nanointegration Duisburg-EssenDuisburgGermany

Personalised recommendations