Sonicated and stirred copper oxide nanoparticles induce similar toxicity and pro-inflammatory response in N-hTERT keratinocytes and SZ95 sebocytes

  • Jean-Pascal Piret
  • Jorge Mejia
  • Stéphane Lucas
  • Christos C. Zouboulis
  • Christelle Saout
  • Olivier Toussaint
Research Paper

Abstract

The potential toxic and pro-inflammatory effects of rod-shaped copper oxide (CuO) nanoparticles (NPs; 10 ± 3 nm in thickness and 74 ± 17 nm in length) were studied on N-hTERT keratinocytes and SZ95 sebocytes and on reconstructed human epidermis. Non-sonicated and sonicated CuO NPs induced similar cellular toxicity. The toxic effect of CuO NPs (non-sonicated and sonicated) was more pronounced in keratinocytes than in sebocytes. Pro-oxidant effects of CuO NPs were demonstrated by showing increase in the production of reactive oxygen species and decrease of cellular glutathione. In addition, DNA-binding activities suggested that redox-sensitive transcription factors Nrf2 and NF-κB were implicated in the response of keratinocytes to CuO NPs. Transcriptomic analysis showed an increase in the abundance of transcript species coding for pro-inflammatory interleukins (e.g. IL-8 and IL-1α) and chemokines. In reconstituted human epidermis exposed topically to raw CuO NPs, no effect on the integrity, viability and inflammatory response was noticed.

Keywords

Copper oxide nanoparticles Sonication Sebocytes Keratinocytes Toxicity Inflammatory response 

Notes

Acknowledgments

This work was supported by the DGO6 (Direction Générale Opérationnelle de l’Economie, de l’Emploi et de la Recherche) of the Walloon Region of Belgium (‘Nanotoxico’ Pole of Excellence, 516252). The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 262163 (QualityNano infrastructure). O. Toussaint is a Senior Research Associate of the Belgian FNR/FNRS.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11051_2014_2337_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 81 kb)
11051_2014_2337_MOESM2_ESM.pdf (27 kb)
Supplementary material 2 (PDF 27 kb)
11051_2014_2337_MOESM3_ESM.pdf (26 kb)
Supplementary material 3 (PDF 26 kb)

References

  1. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078CrossRefGoogle Scholar
  2. Bertrand-Vallery V, Belot N, Dieu M, Delaive E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O (2010a) Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor. PLoS One 5(5):e10462CrossRefGoogle Scholar
  3. Bertrand-Vallery V, Boilan E, Ninane N, Demazy C, Friguet B, Toussaint O, Poumay Y, Debacq-Chainiaux F (2010b) Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16(INK-4A). Biogerontology 11(2):167–181CrossRefGoogle Scholar
  4. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86(2):211–218CrossRefGoogle Scholar
  7. Briviba K, Klotz LO, Sies H (1997) Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378(11):1259–1265Google Scholar
  8. Brown DM, Donaldson K, Stone V (2010) Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes. J Biomed Nanotechnol 6(3):224–233CrossRefGoogle Scholar
  9. Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381(3):607–616CrossRefGoogle Scholar
  10. Cohen D, Soroka Y, Ma’or Z, Oron M, Portugal-Cohen M, Bregegere FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y (2012) Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol In Vitro 27(1):292–298. doi: 10.1016/j.tiv.2012.08.026 CrossRefGoogle Scholar
  11. Coquette A, Berna N, Vandenbosch A, Rosdy M, De Wever B, Poumay Y (2003) Analysis of interleukin-1alpha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro 17(3):311–321CrossRefGoogle Scholar
  12. Cronholm P, Midander K, Karlsson HL, Elihn K, Wallinder IO, Moller L (2011) Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells. Nanotoxicology 5(2):269–281CrossRefGoogle Scholar
  13. Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P, Bergamaschi E, Migliore L (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28(3):287–299CrossRefGoogle Scholar
  14. Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20(4):1436–1447CrossRefGoogle Scholar
  15. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371CrossRefGoogle Scholar
  16. Gabbay G, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Ind Textiles 35:323–335CrossRefGoogle Scholar
  17. Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M (2011) Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 5(12):9326–9338CrossRefGoogle Scholar
  18. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nano sized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316CrossRefGoogle Scholar
  19. Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7(11–12):1664–1673CrossRefGoogle Scholar
  20. Kang SJ, Ryoo IG, Lee YJ, Kwak MK (2012) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258(1):89–98CrossRefGoogle Scholar
  21. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732CrossRefGoogle Scholar
  22. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118CrossRefGoogle Scholar
  23. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122CrossRefGoogle Scholar
  24. Kunsch C, Rosen CA (1993) NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13(10):6137–6146Google Scholar
  25. Lewis DA, Yi Q, Travers JB, Spandau DF (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 19(4):1346–1353CrossRefGoogle Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefGoogle Scholar
  27. Ma Q (2009) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125(3):376–393CrossRefGoogle Scholar
  28. Mejia J, Tichelaar F, Saout S, Toussaint O, Masereel B, Mekhalif Z, Lucas S, Delhalle J (2011) Effects of the dispersion methods in Pluronic F108 on the size and the surface composition of MWCNTs and their implications in toxicology assessment. J Nanopart Res 13(2):655–667CrossRefGoogle Scholar
  29. Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3):389–399CrossRefGoogle Scholar
  30. Mortimer M, Kasemets K, Kahru A (2009) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269(2–3):182–189Google Scholar
  31. Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K (2007) Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58 Suppl 5(Pt 2):461–470Google Scholar
  32. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295CrossRefGoogle Scholar
  33. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  34. Piret J-P, Detriche S, Vigneron R, Vankoningsloo S, Rolin S, Mejia Mendoza JH, Masereel B, Lucas S, Delhalle J, Luizi F, Saout C, Toussaint O (2010) Dispersion of multi-walled carbon nanotubes in biocompatible dispersants. J Nanopart Res 12:75–82CrossRefGoogle Scholar
  35. Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noel F, Fransolet M, Demazy C, Lucas S, Saout C, Toussaint O (2012a) Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale 4:7168–7184CrossRefGoogle Scholar
  36. Piret JP, Vankoningsloo S, Mejia J, Noel F, Boilan E, Lambinon F, Zouboulis CC, Masereel B, Lucas S, Saout C, Toussaint O (2012b) Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 6(7):789–803CrossRefGoogle Scholar
  37. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590CrossRefGoogle Scholar
  38. Satih S, Savinel H, Rabiau N, Fontana L, Bignon YJ, Bernard-Gallon DJ (2009) Expression analyses of nuclear receptor genes in breast cancer cell lines exposed to soy phytoestrogens after BRCA2 knockdown by TaqMan Low-Density Array (TLDA). J Mol Signal 4:3CrossRefGoogle Scholar
  39. Schramm A, Vandesompele J, Schulte JH, Dreesmann S, Kaderali L, Brors B, Eils R, Speleman F, Eggert A (2007) Translating expression profiling into a clinically feasible test to predict neuroblastoma outcome. Clin Cancer Res 13(5):1459–1465CrossRefGoogle Scholar
  40. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914CrossRefGoogle Scholar
  41. Sun Q, Tan D, Zhou Q, Liu X, Cheng Z, Liu G, Zhu M, Sang X, Gui S, Cheng J, Hu R, Tang M, Hong F (2012) Oxidative damage of lung and its protective mechanism in mice caused by long-term exposure to titanium dioxide nanoparticles. J Biomed Mater Res A 100(10):2554–2562CrossRefGoogle Scholar
  42. Uruno A, Motohashi H (2011) The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide 25(2):153–160CrossRefGoogle Scholar
  43. Vallyathan V, Shi X (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105(Suppl 1):165–177CrossRefGoogle Scholar
  44. Vankoningsloo S, De Pauw A, Houbion A, Tejerina S, Demazy C, de Longueville F, Bertholet V, Renard P, Remacle J, Holvoet P, Raes M, Arnould T (2006) CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes. J Cell Sci 119(Pt 7):1266–1282CrossRefGoogle Scholar
  45. Vankoningsloo S, Piret JP, Saout C, Noel F, Mejia J, Zouboulis CC, Delhalle J, Lucas S, Toussaint O (2010) Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology 4(1):84–97CrossRefGoogle Scholar
  46. Vankoningsloo S, Piret JP, Saout C, Noel F, Mejia J, Coquette A, Zouboulis CC, Delhalle J, Lucas S, Toussaint O (2012) Pro-inflammatory effects of different MWCNTs dispersions in p16(INK4A)-deficient telomerase-expressing human keratinocytes but not in human SV-40 immortalized sebocytes. Nanotoxicology 6(1):77–93CrossRefGoogle Scholar
  47. Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA (2013) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9(8):1159–1168CrossRefGoogle Scholar
  48. Zhou K, Wang R, Xu B, Li Y (2006) Synthesis, characterization and catalytic properties of CuO nanoparticles with various shapes. Nanotechnology 17:3939–3943CrossRefGoogle Scholar
  49. Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE (1999) Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol 113(6):1011–1020CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jean-Pascal Piret
    • 1
  • Jorge Mejia
    • 2
  • Stéphane Lucas
    • 2
  • Christos C. Zouboulis
    • 3
  • Christelle Saout
    • 1
  • Olivier Toussaint
    • 1
  1. 1.URBC, Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS)University of NamurNamurBelgium
  2. 2.Research Centre for the Physics of Matter and Radiation (PMR-LARN), NNC-NARILISUniversity of NamurNamurBelgium
  3. 3.Departments of Dermatology, Venereology, Allergology and ImmunologyDessau Medical CenterDessauGermany

Personalised recommendations