Advertisement

Enhanced magnetic coercivity of α-Fe2O3 obtained from carbonated 2-line ferrihydrite

  • B. Vallina
  • J. D. Rodriguez-Blanco
  • A. P. Brown
  • L. G. Benning
  • J. A. Blanco
Research Paper

Abstract

We report the physical properties of α-Fe2O3 (hematite), synthesized by dry-heating (350–1,000 °C) of a new, poorly ordered iron oxyhydroxide precursor compound that we name carbonated 2-line ferrihydrite. This precursor was characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, and thermogravimetric analysis, whereas the α-Fe2O3 was studied with X-ray diffraction, scanning and transmission electron microscopy, and magnetic techniques. α-Fe2O3 synthesized at 350 °C consisted of single-nanocrystal particles (length × width 20 ± 6 nm (L) × 15 ± 4 nm (W)), which at room temperature exhibited very narrow hysteresis loops of low coercivities (<300 Oe). However, α-Fe2O3 synthesized at higher temperatures (1,000 °C) was composed of larger nanocrystalline particle aggregates (352 ± 109 nm (L) × 277 ± 103 nm (W)) that also showed wide-open hysteresis loops of high magnetic coercivities (~5 kOe). We suggest that these synthesis-temperature-dependent coercivity values are a consequence of the subparticle structure induced by the different particle and crystallite size growth rates at increasing annealing temperature.

Keywords

Hematite Ferrihydrite High coercivity Carbonate Microstructure 

Notes

Acknowledgments

This research was supported by the Spanish Ministry of Economy and Competitivity (MICINN-12-MAT2011-27573-C04-02) and the Marie Curie EU-FP6 MINGRO Research and Training Network under contract MRTNCT-2006-035488. The authors would like to thank the Cohen Laboratories at the School of Earth and Environment and the Leeds Electron Microscopy and Spectroscopy Centre (LEMAS) at the Faculty of Engineering (University of Leeds). The help of David Martínez Blanco (Scientific-Technical Services of the University of Oviedo, Spain) with the magnetic measurements is also acknowledged.

Supplementary material

11051_2014_2322_MOESM1_ESM.pdf (672 kb)
Supplementary material 1 (PDF 671 kb)

References

  1. An Z, Zhang J, Pan S, Song G (2012) Novel peanut-like α-Fe2O3 superstructures: oriented aggregation and Ostwald ripening in a one-pot solvothermal process. Powder Technol 217:274–280. doi: 10.1016/j.powtec.2011.10.038 CrossRefGoogle Scholar
  2. Andersen FA, Brečević L (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand 45:1018–1024. doi: 10.1002/chin.199209005 CrossRefGoogle Scholar
  3. Bahgat M, Khedr MH, Nasr MI, Sedeek EK (2006) Effect of temperature on reduction of nanocrystalline Fe2O3 into metallic iron. Mater Sci Tech Ser 22:315–320. doi: 10.1179/026708306X81559 CrossRefGoogle Scholar
  4. Bao L, Yang H, Wang X, Zhang F, Shi R, Liu B, Wang L, Zhao H (2011) Effect of temperature on reduction of nanocrystalline Fe2O3 into metallic iron. J Cryst Growth 328:62–69. doi: 10.1016/j.jcrysgro.2011.05.030 CrossRefGoogle Scholar
  5. Bercoff PG, Bertorello HR (2010) Magnetic properties of hematite with large coercivity. App Phys A 100:1019–1027. doi: 10.1007/s00339-010-5983-7 CrossRefGoogle Scholar
  6. Berquó TS, Banerjee SK, Ford RG, Penn RL, Pichler T (2007) High crystallinity Si-ferrihydrite: an insight into its neel temperature and size dependence of magnetic properties. J Geophys Res 112:B02102. doi: 10.1029/2006JB004583 Google Scholar
  7. Carta D, Casula MF, Corrias A, Falqui A, Navarra G, Pinna G (2009) Structural and magnetic characterization of synthetic ferrihydrite nanoparticles. Mater Chem Phys 113:349–355. doi: 10.1016/j.matchemphys.2008.07.122 CrossRefGoogle Scholar
  8. Chang C, Zhang C, Wang W, Li Q (2010) Preparation and magnetic properties of Fe2O3 microtubules prepared by sol-gel template method. Rare Met 29:501–504. doi: 10.1007/s12598-010-0156-6 CrossRefGoogle Scholar
  9. Coelho AA (2003) TOPAS: General profile and structure analysis software for powder diffraction dataGoogle Scholar
  10. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions and occurrences and uses. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. Cullity BD, Graham CD (2008) Introduction to magnetic materials. Wiley-IEEE Press, PiscatawayCrossRefGoogle Scholar
  12. Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. Am Mineral 93:1326–1337. doi: 10.2138/am.2008.276 CrossRefGoogle Scholar
  13. Eggleton RA, Fitzpatrick RW (1988) New data and a revised structural model for ferrihydrite. Clay Clay Miner 36:111–124. doi: 10.1346/CCMN.1988.0360203 CrossRefGoogle Scholar
  14. Fang XL, Chen C, Jin MS, Kuang Q, Xie ZX, Xie SY, Huang RB, Zheng LS (2009) Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. J Mater Chem 19:6154–6160. doi: 10.1039/b905034e CrossRefGoogle Scholar
  15. Farmer VC (1974) The infrared spectra of minerals. Mineralogical society monograph, vol 4. Mineralogical Society of Great Britain & Ireland, TwickenhamGoogle Scholar
  16. Galwey AK, Brown ME (1999) Decomposition of carbonates. Thermal decomposition of ionic solids. Elsevier B.V. Ed, In, pp 345–364Google Scholar
  17. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520. doi: 10.1070/RC2005v074n06ABEH000897 CrossRefGoogle Scholar
  18. Guo P, Wei Z, Wang B, Ding Y, Li H, Zhang G, Zhao XS (2011) Controlled synthesis, magnetic and sensing properties of hematite nanorods and microcapsules. Colloid Surf A 380:234–240. doi: 10.1016/j.colsurfa.2011.02.026 CrossRefGoogle Scholar
  19. Islam MS, Kusumoto Y, Abdulla-Al-Mamun M (2012) Novel rose-type magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoplates synthesized by simple hydrothermal decomposition. Mater Lett 66:165–167. doi: 10.1016/j.matlet.2011.08.057 CrossRefGoogle Scholar
  20. Jacob J, Khadar MA (2010) VSM and Mössbauer study of nanostructured hematite. J Magn Magn Mater 322:614–621. doi: 10.1016/j.jmmm.2009.10.025 CrossRefGoogle Scholar
  21. Jia XH, Song HJ (2012) Facile synthesis of monodispersed α-Fe2O3 microspheres through template-free hydrothermal route. J Nanopart Res 14:663. doi: 10.1007/s11051-011-0663-x CrossRefGoogle Scholar
  22. Jia X, Yang L, Song H, Su Y (2011) Facile synthesis and magnetic properties of cross α-Fe2O3 nanorods. Micro Nano Lett 6:806–808. doi: 10.1049/mnl 2011.0367CrossRefGoogle Scholar
  23. Kletetschka G, Wasilewski PJ (2002) Grain size limit for SD hematite. Phys Earth Planet In 129:173–179. doi: 10.1016/S0031-9201(01)00271-0 CrossRefGoogle Scholar
  24. Kumar P (2010) Magnetic behavior of surface nanostructured 50-nm nickel thin films. Nanoscale Res Lett 5:1596–1602. doi: 10.1007/s11671-010-9682-2 CrossRefGoogle Scholar
  25. Kumar P, Krishna MG, Bhattacharya AK (2009) Effect of microstructural evolution on magnetic properties of Ni thin films. Bull Mater Sci 32:263–270. doi: 10.1007/s12034-009-0040-x CrossRefGoogle Scholar
  26. Li GS, Smith RL Jr, Inomata H, Arai K (2002) Preparation and magnetization of hematite nanocrystals with amorphous iron oxide layers by hydrothermal conditions. Mater Res Bull 37:949–955. doi: 10.1016/S0025-5408(02)00695-5 CrossRefGoogle Scholar
  27. Li L, Chu Y, Liu Y (2007) Synthesis and characterization of ring-like α-Fe2O3. Nanotechnology 18:105603. doi: 10.1088/0957-4484/18/10/105603 CrossRefGoogle Scholar
  28. Li Z, Lai X, Wang H, Mao D, Xing C, Wang D (2009) Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology 20:245603. doi: 10.1088/0957-4484/20/24/245603 CrossRefGoogle Scholar
  29. Liu Q, Barrón V, Torrent J, Eeckhout SG, Deng C (2008) Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J Geophys Res 113:B01103. doi: 10.1029/2007JB005207 Google Scholar
  30. Liu H, Li P, Lu B, Wei Y, Sun Y (2009) Transformation of ferrihydrite in the presence or absence of trace Fe(II): the effect of preparation procedures of ferrihydrite. J Solid State Chem 182:1767–1771. doi: 10.1016/j.jssc.2009.03.030 CrossRefGoogle Scholar
  31. Liu Q, Barrón V, Torrent J, Qin H, Yu Y (2010) The magnetismo of micro-sized hematite explained. Phys Earth Planet In 183:387–397. doi: 10.1016/j.pepi.2010.08.008 CrossRefGoogle Scholar
  32. Liu C, Ma J, Liu Y (2011) Formation mechanism and magnetic properties of three different hematite nanostructures synthesized by one-step hydrothermal procedure. Sci China Chem 54:1607–1614. doi: 10.1007/s11426-011-4392-x CrossRefGoogle Scholar
  33. Lovesey SW, Rodríguez-Fernández A, Blanco JA (2011) Parity-odd multipoles, magnetic charges, and chirality in hematite α-Fe2O3. Phys Rev B 83:054427. doi: 10.1103/PhysRevB.83.054427 CrossRefGoogle Scholar
  34. Lu BL, Xu XY, Wu D, Sun YH (2008) Preparation and characterization of porous alpha-Fe2O3 nanodisks. Chin J Inorg Chem 24:1690–1694Google Scholar
  35. Michel FM, Barrón V, Torrent J, Morales MP, Serna CJ, Boily JF, Liu Q, Ambrosini A, Cismasu AC, Brown GE Jr (2010) Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. P Natl Acad Sci USA 107:2787–2792. doi: 10.1073/pnas.0910170107 CrossRefGoogle Scholar
  36. Mitra S, Das S, Mandal K, Chaudhuri S (2007) Synthesis of a α-Fe2O3 nanocrystals in its different morphological attributes: grow mechanism, optical and magnetic properties. Nanotechnology 18:275608. doi: 10.1088/0957-4484/18/27/275608 CrossRefGoogle Scholar
  37. Muruganandham M, Amutha R, Sathish M, Singh TS, Suri RPS, Sillanpää MJ (2011) Facile fabrication of hierarchical α-Fe2O3: self-assembly and its magnetic and electrochemical properties. Phys Chem C 115:18164–18173. doi: 10.1021/jp205834m CrossRefGoogle Scholar
  38. Ni S, Lin S, Pan Q, Yang F, Huang K, Wang X, He D (2009) Synthesis of core–shell α-Fe2O3 hollow micro-spheres by a simple two-step process. J Alloy Compd 478:876–879. doi: 10.1016/j.jallcom.2008.12.038 CrossRefGoogle Scholar
  39. Ni H, Ni Y, Zhou Y, Hong J (2012) Microwave–hydrothermal synthesis, characterization and properties of rice-like α-Fe2O3 nanorods. Mater Lett 73:206–208. doi: 10.1016/j.matlet.2012.01.065 CrossRefGoogle Scholar
  40. Pan Q, Huang K, Ni S, Yang F, Lin S, He D (2009) Synthesis of α-Fe2O3 dendrites by a hydrothermal approach and their application in lithium-ion batteries. J Phys D Appl Phys 42:015417. doi: 10.1088/0022-3727/42/1/015417 CrossRefGoogle Scholar
  41. Peng D, Beysen S, Li Q, Sun Y, Yang L (2010) Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology 8:386–389. doi: 10.1016/j.partic.2010.05.003 CrossRefGoogle Scholar
  42. Raiswell R, Vu HP, Brinza L, Benning LG (2010) The determination of Fe in ferrihydrite by ascorbic acid extraction: methodology, dissolution kinetics and loss of solubility with age and de-watering. Chem Geol 278:70–79. doi: 10.1016/j.chemgeo.2010.09.002 CrossRefGoogle Scholar
  43. Rath C, Sahu KK, Kulkarni SD, Anand S, Date SK, Das RP, Mishra NC (1999) Microstructure-dependent coercivity in monodispersed hematite particles. Appl Phys Lett 75:4171–4173. doi: 10.1063/1.125572 CrossRefGoogle Scholar
  44. Rodriguez-Blanco JD, Shaw S, Benning LG (2008) How to make ‘stable’ ACC: protocol and preliminary structural characterization. Mineral Mag 72:283–286. doi: 10.1180/minmag.2008.072.1.283 CrossRefGoogle Scholar
  45. Roncal-Herrero T, Rodriguez-Blanco JD, Benning LG, Oelkers EH (2009) Precipitation or iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 & #xB0;C. Cryst Growth Des 9:5197–5205. doi: 10.1021/cg900654m CrossRefGoogle Scholar
  46. Rout K, Mohapatra M, Anand S (2012) 2-Line ferrihydrite: synthesis, characterization and its adsorption behavior for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Dalton Trans 41:3302–3312. doi: 10.1039/c2dt11651k CrossRefGoogle Scholar
  47. Sahu KK, Rath C, Mishra NC, Anand S, Das RP (1997) Microstructural and magnetic studies on hydrothermally prepared hematite. J Colloid Interface Sci 185:402–410. doi: 10.1006/jcis 1996.4525CrossRefGoogle Scholar
  48. Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr Ges Wiss Götingen Math-Pys Kl 2:96–100Google Scholar
  49. Schneeweiss O, Grygar T, David B, Zboril R, Filip J, Mashlan M (2008) Mössbauer and magnetic studies of nanocrystalline iron, iron oxide and iron carbide powders prepared from synthetic ferrihydrite. AIP Conf Proc 1070:106–113. doi: 10.1063/1.3030834 CrossRefGoogle Scholar
  50. Schwertmann U, Taylor RM (1972) The transformation of lepidocrocite to goethite. Clay Clay Miner 20:151–158. doi: 10.1346/CCMN.1972.0200306 CrossRefGoogle Scholar
  51. Song F, Guan J, Fan X, Yan G (2009) Single-crystal star-like arrayed particles of hematite: synthesis, formation mechanism and magnetic properties. J Alloy Compd 485:753–758. doi: 10.1016/j.jallcom.2009.06.075 CrossRefGoogle Scholar
  52. Song HJ, Li N, Shen XQ (2011) Template-free synthesis of hollow α-Fe2O3 microspheres. Appl Phys A-Mater 102:559–563. doi: 10.1007/s00339-010-6072-7 CrossRefGoogle Scholar
  53. Stanjek H, Weidler PG (1992) The effect of dry heating on the chemistry, surface area, and oxalate solubility of synthetic 2-line and 6-line ferrihydrites. Clay Miner 27:397–412. doi: 10.1180/claymin.1992.027.4.01 CrossRefGoogle Scholar
  54. Suber L, Imperatori P, Mari A, Marchegiani G, Mansilla MV, Fiorani D, Plunkett WR, Rinaldi D, Cannas C, Ennas G, Peddis D (2010) Thermal hysteresis of Morin transition in hematite particles. Phys Chem Chem Phys 12:6984–6989. doi: 10.1039/b925371h CrossRefGoogle Scholar
  55. Suresh R, Vijayaraj A, Giribabu K, Manigandan R, Prabu R, Stephen A, Thirumal E, Narayanan V (2013) Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. J Mater Sci-Mater El 24:1256–1263. doi: 10.1007/s10854-012-0916-1 CrossRefGoogle Scholar
  56. Tadic M, Citakovic N, Panjan M, Stanojevic B, Markovic D, Jovanovic D, Spasojevic V (2012) Syntesis, morphology, microstructure and magnetic properties of hematite submicron particles. J Alloy Compd 543:118–124. doi: 10.1016/j.jallcom.2012.07.047 CrossRefGoogle Scholar
  57. Tadić M, Čitaković N, Panjan M, Stojanović Z, Marković D, Spasojević V (2011) Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. J Alloy Compd 509:7639–7644. doi: 10.1016/j.jallcom.2011.04.117 CrossRefGoogle Scholar
  58. Tsuzuki T, Schäffel F, Muroi M, McCormick PG (2011) α-Fe2O3 nano-platelets prepared by mechanochemical/termal processing. Powder Technol 210:198–202. doi: 10.1016/j.powtec.2011.03.012 CrossRefGoogle Scholar
  59. Vallina B, Rodriguez-Blanco JD, Brown AP, Blanco JA, Benning LG (2013) Amorphous dysprosium carbonate: characterization, stability, and crystallization pathways. J Nanopart Res 15:1438. doi: 10.1007/s11051-013-1438-3 CrossRefGoogle Scholar
  60. Vu HP, Shaw S, Brinza L, Benning LG (2010) Crystallization of hematite (α-Fe2O3) under alkaline condition: the effects of Pb. Cryst Growth Des 10:1544–1551. doi: 10.1021/cg900782g CrossRefGoogle Scholar
  61. Wang H, Geng WC, Wang Y (2011) Preparation of nanoparticles and hollow spheres of alpha-Fe2O3 and their properties. Res Chem Intermediat 37:389–395. doi: 10.1007/s11164-011-0269-z CrossRefGoogle Scholar
  62. Xu JS, Zhu YJ (2012) α-Fe2O3 hierarchically nanostructured mesoporous microspheres: surfactant-free solvothermal combined with heat treatment synthesis, photocatalytic activity and magnetic property. CrystEngComm 14:2702–2710. doi: 10.1039/C2CE06473A CrossRefGoogle Scholar
  63. Xu YY, Zhao D, Zhang XJ, Jin WT, Kashkarov P, Zhang H (2009) Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physica E 41:806–811. doi: 10.1016/j.physe.2008.12.015 CrossRefGoogle Scholar
  64. Xu W, Hausner DB, Harrington R, Lee PL, Strongin DR, Parise JB (2011) Structural water in ferrihydrite and constraints this provides on possible structure models. Am Mineral 96:513–520. doi: 10.2138/am 2011.3460CrossRefGoogle Scholar
  65. Xu JS, Zhu YL, Chen F (2013) Solvothermal synthesis, characterization and magnetic properties of α-Fe2O3 and Fe3O4 flower-like hollow microspheres. J Solid State Chem 199:204–211. doi: 10.1016/j.jssc.2012.12.027 CrossRefGoogle Scholar
  66. Yadav LDS (2005) Organic spectroscopy. Anamaya Publishers, New DelhiCrossRefGoogle Scholar
  67. Yang Y, Yi JB, Huang XL, Xue JM, Ding J (2011) High-coercivity in α-Fe2O3 formed after annealing from Fe3O4 formed nanoparticles. IEEE T Magn 47:3340–3342. doi: 10.1109/TMAG.2011.2159487 CrossRefGoogle Scholar
  68. Yao R, Cao C (2012) Self-assembly of α-Fe2O3 mesocrystals with high coercivity. RSC Adv 2:1979–1985. doi: 10.1039/c2ra00796g CrossRefGoogle Scholar
  69. Yu JY, Park M, Kim J (2002) Solubilities of synthetic schwertmannite and ferrihydrite. Geochem J 36:119–132CrossRefGoogle Scholar
  70. Zeng S, Tang K, Li T (2007) Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties. J Colloid Interface Sci 312:513–521. doi: 10.1016/j.jcis.2007.03.046 CrossRefGoogle Scholar
  71. Zhang ZJ, Chen XY (2009) Magnetic greigite (Fe3S4) nanomaterials: shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials. J Alloy Compd 488:339–345. doi: 10.1016/j.jallcom.2009.08.127 CrossRefGoogle Scholar
  72. Zhang YC, Tang JY, Hu XY (2008) Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J Alloy Compd 462:24–28. doi: 10.1016/j.jallcom.2007.07.115 CrossRefGoogle Scholar
  73. Zhang XH, Chen YZ, Liu H, Wei Y, Wei W (2013) Controllable synthesis, formation mechanism and magnetic properties of hierarchical alpha-Fe2O3 with various morphologies. J Alloy Compd 55:74–81. doi: 10.1016/j.jallcom.2012.12.025 CrossRefGoogle Scholar
  74. Zhao J, Huggins FE, Feng Z, Huffman GP (1994) Ferrihydrite: surface structure and its effects on phase transformation. Clay Clay Miner 42:737–746CrossRefGoogle Scholar
  75. Zhong SL, Song JM, Zhang S, Yao H, Xu AW, Yao WT, Yu SH (2008) Template-free hydrothermal synthesis and formation mechanism of hematite microrings. J Phys Chem C 112:19916–19921. doi: 10.1021/jp806665b CrossRefGoogle Scholar
  76. Zhu LP, Xiao HM, Liu XM, Fu SY (2006) Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J Mater Chem 16:1794–1797. doi: 10.1039/b604378j CrossRefGoogle Scholar
  77. Zhu W, Cui X, Wang L, Liu T, Zhang Q (2011) Monodisperse porous pod-like hematite: hydrothermal formation, optical absorbance, and magnetic properties. Mater Lett 65:1003–1006. doi: 10.1016/j.matlet.2010.12.053 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Vallina
    • 1
    • 2
  • J. D. Rodriguez-Blanco
    • 1
    • 3
  • A. P. Brown
    • 4
  • L. G. Benning
    • 1
  • J. A. Blanco
    • 2
  1. 1.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.Departamento de FísicaUniversidad de OviedoOviedoSpain
  3. 3.Department of Chemistry, Nano-Science CenterUniversity of Copenhagen H.C Oersted InstituteKopenhagenDenmark
  4. 4.Faculty of Engineering, Institute for Materials ResearchSPEME, University of LeedsLeedsUK

Personalised recommendations