Statistical analysis of stretched aluminum nanowires

  • Enrique Abad
  • César González
  • José I. Martínez
  • Fernando Flores
  • José Ortega
Research Paper

Abstract

We present a statistical analysis of the mechanical and transport properties of stretched Al nanowires. A molecular dynamics density functional theory is used in combination with annealing techniques to analyze a large amount of stretching processes and new realistic geometries. From these calculations, we generate a conductance histogram that is compared with the experimental evidence. New particular geometries appear frequently, and a correlation between these new structures and the peaks in the conductance histogram can be fairly established. In particular, at the first stages of the nanowire elongation, we find a configuration with Al–Al bonds oriented along the stretching direction that is related to the peak appearing at 3 G0 in the conductance histogram. Besides, an Al–Al dimer is found in most of the cases at the nanowire neck in the last stage of the nanowire stretching, just before the breaking point; this configuration is reflected in the peak found in the conductance histogram at 1 G0.

Keywords

Density functional theory Metal nanowires Aluminum Annealing Conductance histogram Modeling and simulation 

References

  1. Agraït N, Yeyati A, Ruitenbeek JV (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279Google Scholar
  2. Basanta MA, Dappe YJ, Jelínek P, Ortega J (2007) Optimized atomic-like orbitals for first-princiles tight-binding molecular dynamics. Comput Mater Sci 39:759Google Scholar
  3. Bhushan B (2004) Handbook of nanotechnology. Springer, BerlinGoogle Scholar
  4. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180Google Scholar
  5. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933Google Scholar
  6. Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R (2004) First-principles simulations of STM images: from tunneling to the contact regime. Phys Rev B 70:085405(1)–085405(9)Google Scholar
  7. Blanco JM, Flores F, Pérez R (2006) STM-theory: image potential, chemistry and surface relaxation. Prog Surf Sci 81:403–443Google Scholar
  8. Brandbyge M, Schiøtz J, Sørensen M, Stoltze P, Jacobsen K, Nørskov J, Olesen L, Laegsgaard E, Stensgaard I, Besenbacher F (1995) Quantized conductance in atom-sized wires between two metals. Phys Rev B 52:8499–8514Google Scholar
  9. Caroli C, Combescot R, Nozieres P, Saint-James D (1972) Direct calculation of the tunneling current. J Phys C: Sol Stat Phys 4:916–929Google Scholar
  10. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255Google Scholar
  11. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  12. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746Google Scholar
  13. García-Mochales P, Paredes R, Peláez S, Serena PA (2008) Statistical analysis of the breaking processes of Ni nanowires. Nanotechnology 19:225704(1)–225704(9)Google Scholar
  14. García-Mochales P, Peláez S, Serena PA, Medina E, Hasmy A (2012) Breaking processes in nickel nanocontacts: a statistical description. Appl Phys A 81:1545–1549Google Scholar
  15. García-Vidal FJ, Flores F, Davison SG (2003) Propagator theory of quantum wire transmission. Prog Surf Sci 74:177–184Google Scholar
  16. Gimzewski J, Möller R (1987) Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys Rev B 36:1284–1287Google Scholar
  17. Gómez-Navarro C, de Pablo PJ, Gómez-Herrero J, Biel B, García-Vidal FJ, Rubio A, Flores F (2005) Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat Mater 4:534–539Google Scholar
  18. González C, Ortega J, Flores F, Martínez-Martín D, Gómez-Herrero J (2009) Initial stages of the contact between a metallic tip and carbon nanotubes. Phys Rev Lett 102:106801(1)–106801(4)Google Scholar
  19. Häfner M (2009) Ph.D. thesis, Universität KarlsruheGoogle Scholar
  20. Jelínek P, Pérez R, Ortega J, Flores F (2003) First-principles simulations of the stretching and final breaking of Al nanowires: mechanical properties and electrical conductance. Phys Rev B 68:085403(1)–085403(6)Google Scholar
  21. Jelínek P, Pérez R, Ortega J, Flores F (2004) Mechanical properties and electrical conductance of different Al nanowires submitted to an homogeneous deformation: a first-principles simulation. Surf Sci 566:13–23Google Scholar
  22. Jelínek P, Pérez R, Ortega J, Flores F (2005a) Universal behaviour in the final stage of the breaking process for metal nanowires. Nanotechnology 16:1023–1028Google Scholar
  23. Jelínek P, Wang H, Lewis J, Sankey O, Ortega J (2005b) Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys Rev B 71:235101(1)–235101(9)Google Scholar
  24. Jelínek P, Pérez R, Ortega J, Flores F (2006) Hydrogen dissociation over Au nanowires and the fractional conductance quantum. Phys Rev Lett 96:046803(1)–046803(4)Google Scholar
  25. Jelínek P, Pérez R, Ortega J, Flores F (2008) Ab-initio study of the evolution of the mechanical and transport properties of clean and contaminated Au nanowires along the deformation path. Phys Rev B 77:115447(1)–115447(12)Google Scholar
  26. Landauer R (1988) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 32:306–316Google Scholar
  27. Lewis JP, Glaesemann K, Voth G, Fritsch J, Demkov A, Ortega J, Sankey OF (2001) . Further developments in the local-orbital density-functional-theory tight-binding method. Phys Rev B 64:195103(1)–195103(1)Google Scholar
  28. Lewis JP, Jelínek P, Ortega J, Demkov AA, Trabada DG, Haycock B, Wang H, Adams G, Tomfohr JK, Abad E, Drabold DA (2011) Advances and applications in the FIREBALLab initio tight-binding molecular-dynamics formalism. Phys Stat Sol B 248:1989–2007Google Scholar
  29. Martín-Rodero A, Flores F, March NH (1988) Tight-binding theory of tunneling current with chemisorbed species. Phys Rev B 38:10047–10050Google Scholar
  30. Martínez JI, Abad E, González C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108:246102(1)–246102(5)Google Scholar
  31. Mingo N, Jurczyszyn L, García-Vidal FJ, Saiz-Pardo R, de Andrés P, Flores F, Wu S, More W (1996) Theory of the scanning tunneling microscope: Xe on Ni and Al. Phys Rev B 54:2225–2235Google Scholar
  32. Ortega J, Pérez R, Flores F (2000) A theoretical case study: the Sn/Ge (111)-(3×3) surface. J Phys: Condens Mater 12:L21–L27Google Scholar
  33. Pieczyrak B, González C, Jelínek P, Pérez R, Ortega J, Flores F (2008) Mechanical and electrical properties of stretched clean and H-contaminated Pd-nanowires. Nanotechnology 19:335711(1)–335711(8)Google Scholar
  34. Rodrigues V, Ugarte D (2002) Metal nanowires: atomic arrangement and electrical transport properties. Nanotechnology 13:404–408Google Scholar
  35. Rubio-Bollinger G, Bahn S, Agraït N, Jacobsen K, Vieira S (2001) Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys Rev Lett 87:026101(1)–026101(4)Google Scholar
  36. Sankey OF, Niklewski DJ (1989) Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979–3995Google Scholar
  37. Scheer E, Agraït N, Cuevas JC, Yeyati AL, Ludoph B, Martín-Rodero A, Bollinger G, van Ruitenbeek J, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394:154–157Google Scholar
  38. Sonawane US, Samuel EP, Zope U, Patil DS (2013) Analysis of electron confinement in GaN/AlxGa1-xN quantum wire nanostructure. Optik 124(9):802–806Google Scholar
  39. Sugimoto Y, Pou P, Abe M, Jelínek P, Pérez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64–67Google Scholar
  40. Talele K, Samuel EP, Patil DS (2011) Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122(7):626–630Google Scholar
  41. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477Google Scholar
  42. Tao NJ (2006) Electron transport in molecular junctions. Nat Nano 1:173–181Google Scholar
  43. Todorov T, Sutton A (1993) Jumps in electronic conductance due to mechanical instabilities. Phys Rev Lett 70:2138–2141Google Scholar
  44. Wang J (2009) Can man-made nanomachines compete with nature biomotors? ACS Nano 3:4–9Google Scholar
  45. Witt W (1997) Absolute prazisionbestimmung von gitterkonstanten and germanium- und aluminium-einkristallen mit elektroneninterferenzen. Zeitschrift für Naturforschung A 22A:92Google Scholar
  46. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223Google Scholar
  47. Yanson A, van Ruitenbeek J (1997) Do histograms constitute a proof for conductance quantization? Phys Rev Lett 79:2157–2157Google Scholar
  48. Yeyati A, Flores F, Martín-Rodero A (1999) Transport in multilevel quantum dots: from the kondo effect to the coulomb blockade regime. Phys Rev Lett 83:600–603Google Scholar
  49. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–407Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Enrique Abad
    • 1
  • César González
    • 2
  • José I. Martínez
    • 2
    • 3
  • Fernando Flores
    • 2
  • José Ortega
    • 2
  1. 1.Institute of Theoretical ChemistryUniversität StuttgartStuttgartGermany
  2. 2.Departamento de Física Teŕica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  3. 3.Departamento de Superficies y RecubrimientosInstituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain

Personalised recommendations