Advertisement

Hydrothermal synthesis, characterization, and magnetic properties of cobalt chromite nanoparticles

  • D. Zákutná
  • A. Repko
  • I. Matulková
  • D. Nižňanský
  • A. Ardu
  • C. Cannas
  • A. Mantlíková
  • J. Vejpravová
Research Paper

Abstract

The CoCr2O4 nanoparticles were prepared by hydrothermal treatment of chromium and cobalt oleates in a mixture of solvents (water and ethanol or pentanol) at various temperatures. The samples were further annealed at the temperatures from 300 to 500 °C. The obtained nanoparticles were characterized using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), high-resolution TEM, scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy, and magnetic measurements. The particle size, ranging from 4.4 to 11.5 nm, was determined from the TEM and PXRD methods. The tendency of particles to form the aggregates with the increasing annealing temperature has been observed. The magnetic measurements revealed that the typical features of the CoCr2O4 long-range magnetic order are suppressed in the nanoparticles.

Keywords

Cobalt chromite Hydrothermal method Nanoparticles Size effect Multiferroic materials 

Notes

Acknowledgment

This study was supported by the Grant Agency of the Czech Republic under Project No. P108/10/1250 and by the Long-Term Research Plan of the Ministry of Education of the Czech Republic (MSM0021620857). Magnetic measurements were performed in MLTL (see: http://mltl.eu), which is supported within the program of Czech Research Infrastructures (Project No. LM2011025).

References

  1. Bhowmik RN (2006) Lattice expansion and noncollinear to collinear ferrimagnetic order in a MnCr2O4 nanoparticle. Phys Rev B 73:144413. doi: 10.1103/PhysRevB.73.144413 CrossRefGoogle Scholar
  2. Chang LJ, Huang DJ, Li W-H et al (2009) Crossover from incommensurate to commensurate magnetic orderings in CoCr2O4. J Phys Condens Matter 21(45):456008. doi: 10.1088/0953-8984/21/45/456008 CrossRefGoogle Scholar
  3. Da Rocha S, Thibaudeau P (2003) Ab initio high-pressure thermodynamics of cationic disordered MgAl2O4 spinel. J Phys Condens Matter 15:7103–7115. doi: 10.1088/0953-8984/15/41/018 CrossRefGoogle Scholar
  4. De Sousa Meneses D, Brun JF, Rousseau B, Echegut P (2006) Polar lattice dynamics of the MgAl2O4 spinel up to the liquid state. J Phys Condens Matter 18:5669–5686. doi: 10.1088/0953-8984/18/24/008 CrossRefGoogle Scholar
  5. Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation on fine-particle systems. Adv Chem Phys 98:326Google Scholar
  6. Durrani SK, Hussain SZ, Saeed K (2012) Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk J Chem 36:111–120. doi: 10.3906/kim-1104-61 Google Scholar
  7. Dutta DP, Manjanna J, Tyagi AK (2009) Magnetic properties of sonochemically synthesized CoCr2O4 nanoparticles. J Appl Phys 106(4):043915. doi: 10.1063/1.3204659 CrossRefGoogle Scholar
  8. Edrissi M, Keshavarz AR (2012) Synthesis of cobalt chromite nanoparticles by thermolysis of mixed Cr3+ and Co2+ chelates of 2-mercaptopyridin N-oxide. Nano Micro Lett 4(2):83–89. doi: 10.3786/nml.v4i2.p83-89 Google Scholar
  9. Funahashi S, Morii Y, Child HR (1987) Two dimensional neutron diffraction of YFe2O4 and CoCr2O4. J Appl Phys 61:4114. doi: 10.1063/1.338520 CrossRefGoogle Scholar
  10. Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520CrossRefGoogle Scholar
  11. Hastings JM, Corliss LM (1962) Magnetic structure of manganese chromite. Phys Rev 126:556–565. doi: 10.1103/PhysRev.126.556 CrossRefGoogle Scholar
  12. Hosterman BD, Farley JW, Johnson AL (2013) Spectroscopic study of the vibrational modes of magnesium nickel chromite, MgxNi1−xCr2O4. J Phys Chem Solids 74:985–990. doi: 10.1016/j.jpcs.2013.02.017 CrossRefGoogle Scholar
  13. Khassin AA, Kustova GN, Jobic H, Yurieva TM, Chesalov YA, Filonenko GA, Plyasova LM, Parmon VN (2009) The state of absorbed hydrogen in the structure of reduced copper chromite from the vibration spectra. Phys Chem Chem Phys 11:6090–6097. doi: 10.1039/b821381j CrossRefGoogle Scholar
  14. Kim I, Oh YS, Liu Y et al (2009) Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing. Appl Phys Lett 94(4):042505. doi: 10.1063/1.3076102 CrossRefGoogle Scholar
  15. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77(2):394. doi: 10.1103/PhysRevLett.77.394 CrossRefGoogle Scholar
  16. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1997) Surface spin disorder in ferrite nanoparticles. J Appl Phys 81(8):5552. doi: 10.1063/1.364659 CrossRefGoogle Scholar
  17. Kushwaha AK (2009) Study of interatomic interactions in chromite spinel CoCr2O4. Chin J Phys 47(3):355–360Google Scholar
  18. Kushwaha AK, Kushwaha SS (2007) Zone-centre phonon frequencies of oxide spinels. Chin J Phys 45(3):363–373. doi: org/10.1016/j.physb.2008.05.022 Google Scholar
  19. Laguna-Bercero MA, Sanjuan ML, Merino RI (2007) Raman spectroscopic study of cation disorder in poly- and single crystals of the nickel aluminate spinel. J Phys Condens Matter 19:186217. doi: 10.1088/0953-8984/19/18/186217 CrossRefGoogle Scholar
  20. Li DX, Nimori S, Shiokawa Y, Haga Y, Yamamoto E, Onuki Y (2003) Ferromagnetic clusters glass behaviour in U2IrSi3. Phys Rev B 68:172405. doi: 10.1103/PhysRevB.68.172405 CrossRefGoogle Scholar
  21. Lyons DH, Kaplan TA, Dwight K, Menyuk N (1962) Erratum: classical theory of the ground spin-state in cubic spinels. Phys Rev 126:540. doi: 10.1103/PhysRevB.72.099902 CrossRefGoogle Scholar
  22. Maczka M, Ptak M, Kurnatowska M, Hanuza J (2013) Synthesis, phonon and optical properties of nanosized CoCr2O4. Mater Chem Phys 138(2–3):682–688. doi: 10.1016/j.matchemphys.2012.12.039 CrossRefGoogle Scholar
  23. Menyuk N, Dwight K, Wold A (1964) Ferrimagnetic spiral configurations in cobalt chromite. J Phys 25:528–536. doi: 10.1051/jphys:01964002505052801 CrossRefGoogle Scholar
  24. Nishioka T, Tabata Y, Taniguchi T, Miyako Y (2000) Canonical spin glass behaviour in Ce2AgIn3. J Phys Soc Jpn 69:1012. doi: 10.1143/JPSJ.69.1012 CrossRefGoogle Scholar
  25. Preudhomme J, Tarte P (1971a) Infrared studies of spinels—I: a critical discussion of the actual interpretations. Spectrochim Acta Part A 27(7):961–968. doi: 10.1016/0584-8539(71)80179-4 CrossRefGoogle Scholar
  26. Preudhomme J, Tarte P (1971b) Infrared studies of spinels—III: the normal II–III spinels. Spectrochim Acta Part A 27(9):1817–1835. doi: 10.1016/0584-8539(71)80235-0 CrossRefGoogle Scholar
  27. Rath C, Mohanty P (2010) Magnetic phase transitions in cobalt chromite nanoparticles. J Supercond Nov Magn 24(1–2):629–633. doi: 10.1007/s10948-010-0958-7 Google Scholar
  28. Rath C, Mohanty P, Banerjee A (2011) Magnetic properties of nanoparticles of cobalt chromite. J Magn Magn Mater 323(12):1698–1702. doi: 10.1016/j.jmmm.2011.01.040 CrossRefGoogle Scholar
  29. Repko A, Nižňanský D, Poltierová-Vejpravová J (2011) A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J Nanopart Res 13:5021–5031. doi: 10.1007/s11051-011-0483-z CrossRefGoogle Scholar
  30. Rodríguez-Carvajal J (2000) FullProf User′s guide manual. CEA-CRNS, FranceGoogle Scholar
  31. Shirane G, Cox DE, Pickart SJ (1964) Magnetic structures in FeCr2S4 and FeCr2O4. J Appl Phys 35:954–955. doi: 10.1088/1367-2630/10/5/055014 CrossRefGoogle Scholar
  32. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82(12):3279–3292. doi: 10.1111/j.1151-2916.1999.tb02241.x CrossRefGoogle Scholar
  33. Tomiyasu K, Fukunaga J, Suzuki H (2004) Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys Rev B 70(21):214434. doi: 10.1103/PhysRevB.70.214434 CrossRefGoogle Scholar
  34. Yamasaki Y, Miyasaka S, Kaneko Y et al (2006) Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett 96(20):207204. doi: 10.1103/PhysRevLett.96.207204 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Zákutná
    • 1
    • 2
  • A. Repko
    • 1
  • I. Matulková
    • 1
  • D. Nižňanský
    • 1
    • 4
  • A. Ardu
    • 3
  • C. Cannas
    • 3
  • A. Mantlíková
    • 2
  • J. Vejpravová
    • 2
  1. 1.Department of Inorganic Chemistry, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Physics of the ASCR, v.v.i, Department of Magnetic NanosystemsPrague 8Czech Republic
  3. 3.Università di Cagliari, Dipartimento di Scienze ChimicheComplesso, Universitario di MonserratoMonserratoItaly
  4. 4.Institute of Inorganic Chemistry, ASCRŘež near PragueCzech Republic

Personalised recommendations