Effect of decrease in the size of Pt nanoparticles using sodium phosphinate on electrochemically active surface area

  • Yuji Ohkubo
  • Satoshi Seino
  • Satoru Kageyama
  • Junichiro Kugai
  • Takashi Nakagawa
  • Koji Ueno
  • Takao A. Yamamoto
Research Paper

Abstract

Carbon-supported Pt nanoparticles that contained phosphorus (P–Pt/C) were synthesized by the reduction of Pt ions in an aqueous solution via irradiation with a high-energy electron beam; this synthesis technique is referred to as the electron beam irradiation reduction method (EBIRM). To decrease the size of the Pt nanoparticles supported on the carbon particles, sodium phosphinate (NaPH2O2) was added as a phosphorus precursor to the precursor solution that contained Pt ions. The P–Pt/C samples were observed using a transmission electron microscope. The average particle size of the Pt nanoparticles decreased as the NaPH2O2 concentration in the precursor solution increased. The average particle size was in the range 0.9–3.4 nm. The electrochemically active surface areas (ECSAs) of Pt were estimated using cyclic voltammetry. In contrast to the average particle size, the ECSAs increased as the NaPH2O2 concentration was increased. The decrease in the size of the Pt nanoparticles using NaPH2O2 effectively increased the ECSA. This result indicated that the EBIRM combined with the use of NaPH2O2 to decrease the particle size is a useful and simple tool for the preparation of Pt nanoparticle catalysts with a high specific activity.

Keywords

Nanoparticle Decreasing the particle size Electrochemically active surface area Sodium phosphinate Fuel cell Energy conversion 

Notes

Acknowledgments

We thank the staff of the Japan Electron Beam Irradiation Service for their assistance with the electron beam irradiation experiments. We are also thankful to the Ministry of Economy, Trade and Industry (R&D Project for Regional Innovation No. 22U5009) for their partial supports of this research.

References

  1. Antolini E, Perez J (2011) The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. J Mater Sci 46:4435–4457. doi: 10.1007/s10853-011-5499-3 CrossRefGoogle Scholar
  2. Bae E, Park HJ, Park J, Yoon J, Kim Y, Choi K, Yi J (2011) Effect of chemical stabilizers in silver nanoparticle suspensions on nanotoxicity. Bull Korean Chem Soc 32:613–619. doi: 10.5012/bkcs.2011.32.2.613 CrossRefGoogle Scholar
  3. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113:141–156. doi: 10.1016/j.cattod.2005.11.082 CrossRefGoogle Scholar
  4. Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem 29:269–277CrossRefGoogle Scholar
  5. Chen X (2002) Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials. J Mater Sci Lett 21:1637–1639. doi: 10.1023/A:1020871830587 CrossRefGoogle Scholar
  6. Crabb EM, Marshall R, Thompsett D (2000) Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. J Electrochem Soc 147:4440–4447. doi: 10.1149/1.1394083 CrossRefGoogle Scholar
  7. Daimon H, Kurobe Y (2006) Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catal Today 111:182–187. doi: 10.1016/j.cattod.2005.10.023 CrossRefGoogle Scholar
  8. Daimon H, Kitakami O, Inagoya O, Sakemoto A (1991) Magnetic properties of Fe–Cu and Fe–P electrodeposited alumite films. Jpn J Appl Phys 30:282–289. doi: 10.1143/JJAP.30.282 CrossRefGoogle Scholar
  9. Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal 221:443–457. doi: 10.1016/S0926-860X(01)00818-3 CrossRefGoogle Scholar
  10. Huuhtanen M, Rahkamaa-Tolonen K, Maunula T, Keiski RL (2005) Pt-loaded zeolites for reducing exhaust gas emissions at low temperatures and in lean conditions. Catal Today 100:321–325. doi: 10.1016/j.cattod.2004.09.067 CrossRefGoogle Scholar
  11. Kageyama S, Murakami A, Seino S, Nakagawa T, Daimon H, Yamamoto TA (2012) Enhanced electrochemical stability of PtRuAu/C catalyst synthesized by radiolytic process. J Mater Res 27:1037–1045. doi: 10.1557/jmr.2012.65 CrossRefGoogle Scholar
  12. Kugai J, Kitagawa R, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2011) γ-Fe2O3-supported Pt–Cu nanoparticles synthesized by radiolytic process for catalytic CO preferential oxidation. Appl Catal A-Gen 406:43–50. doi: 10.1016/j.apcata.2011.08.006 CrossRefGoogle Scholar
  13. Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2012) CeO2-supported PteCu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation. Int J Hydrogen Energy 37:4787–4797. doi: 10.1016/j.ijhydene.2011.12.070 CrossRefGoogle Scholar
  14. Ohkubo Y, Shibata M, Kageyama S, Seino S, Nakagawa T, Kugai J, Yamamoto TA (2013) Carbon-supported AuPd bimetallic nanoparticles synthesized by high-energy electron beam irradiation for direct formic acid fuel cell. J Mater Sci 48:2142–2150. doi: 10.1007/s10853-012-6989-7 CrossRefGoogle Scholar
  15. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi: 10.1016/S0022-0728(00)00407-1 CrossRefGoogle Scholar
  16. Pimpang P, Sutham W, Mangkorntong N, Mangkorntong P, Choopun S (2008) Effect of stabilizer on preparation of silver and gold nanoparticle using grinding method. Chiang Mai J Sci 35:250–257Google Scholar
  17. Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2:864–890. doi: 10.1021/cs3000864 CrossRefGoogle Scholar
  18. Santhanalakshmi J, Parimala L (2012) The copper nanoparticles catalysed reduction of substituted nitrobenzenes: effect of nanoparticle stabilizers. J Nanopart Res 14:1090. doi: 10.1007/s11051-012-1090-3 CrossRefGoogle Scholar
  19. Schnetder D, Esch U (1944) Das System Kupfer—Platin. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 50:290–301. doi: 10.1002/bbpc.19440501109 Google Scholar
  20. Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguchi R, Okuda S, Yamamoto TA (2008) Radiation induced synthesis of gold/iron-oxide composite nanoparticles using high energy electron beam. J Nanopart Res 10:1071–1076. doi: 10.1007/s11051-007-9334-3 CrossRefGoogle Scholar
  21. Seoudi R (2008) Effect of polyvinyl alcohol molecular weight and UV-photoactivation on the size of gold nanoparticle. Phys B 403:4236–4240. doi: 10.1016/j.physb.2008.09.016 CrossRefGoogle Scholar
  22. Steele BCH (2001) Material science and engineering: the enabling technology for the commercialization of fuel cell systems. J Mater Sci 36:1053–1068. doi: 10.1023/A:1004853019349 CrossRefGoogle Scholar
  23. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumffillung der Atome. Zeitschrift für Physik 5:17–26. doi: 10.1007/BF01327675 CrossRefGoogle Scholar
  24. Yadav OP, Palmqvist A, Cruise N, Holmberg K (2003) Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide. Colloids and Surfaces A 221:131–134. doi: 10.1016/S0927-7757(03)00141-9 CrossRefGoogle Scholar
  25. Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Bimetallic nanoparticles of PtM(M = Au, Cu, Ni) supported on iron oxide: radiolytic synthesis and CO oxidation catalysis. Appl Catal A-Gen 387:195–202. doi: 10.1016/j.apcata.2010.08.020 CrossRefGoogle Scholar
  26. Yamamoto TA, Kageyama S, Seino S, Nitani H, Nakagawa T, Horioka R, Honda Y, Ueno K, Daimon H (2011) Methanol oxidation catalysis and substructure of PtRu/C bimetallic nanoparticles synthesized by a radiolytic process. Appl Catal A-Gen 396:68–75. doi: 10.1016/j.apcata.2011.01.037 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yuji Ohkubo
    • 1
  • Satoshi Seino
    • 1
  • Satoru Kageyama
    • 1
  • Junichiro Kugai
    • 1
  • Takashi Nakagawa
    • 1
  • Koji Ueno
    • 2
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Japan Electron Beam Irradiation Service LtdIzumiohtsuJapan

Personalised recommendations