Hydrogen-induced Ostwald ripening of cobalt nanoparticles on carbon nanotubes

  • Marcel Di Vece
  • Codruta Zoican-Loebick
  • Lisa D. Pfefferle
Research Paper


Nanoparticles on carbon nanotubes can be used as a high surface area catalyst or as a means to produce well-defined particles. In this study, cobalt nanoparticles were formed on xxsingle-walled carbon nanotubes during hydrogen exposure at an elevated temperature. The average particle size increased as a function of reaction time ranging from 1.5 to 40 nm, indicating hydrogen-induced Ostwald ripening which is remarkable for a nonhydrogen-absorbing material. Mass abundances and cobalt shells were observed which possibly contained hydrogen. The combination of large surface area, high atomic mobility, and hydrogen-induced Ostwald ripening resulted in a novel method to prepare various cobalt nanoparticle shapes and sizes.


Cobalt Nanoparticle Hydrogen Carbon nanotube, magic number Ostwald ripening Nanocomposites 



The authors thank the National Science Foundation (NSF CBET-0828771) and AFOSR MURI (FA9550-08-1-0309) for financial support. Electron microscopy on the T20 was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, the U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. TEM assistance by R. E. Cook is appreciated by the authors.


  1. Aceto S, Chang CY, Vook RW (1992) Hillock growth on aluminum and aluminum alloy films. Thin Solid Films 219(80):86Google Scholar
  2. Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3:1431–1436CrossRefGoogle Scholar
  3. Borjesson A, Bolton K (2011) Modeling of Ostwald ripening of metal clusters attached to carbon nanotubes. J Phys Chem C 115:24454–24462CrossRefGoogle Scholar
  4. Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties Surf. Sci. Rep. 27:1–111CrossRefGoogle Scholar
  5. Carmo M, Paganin VA, Rosolen JM, Gonzalez ER (2005) Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 142:169–176CrossRefGoogle Scholar
  6. Cbaiken J, Casey M, Villarica M (1992) Laser chemistry of organometallics as a general synthetic route to metal clusters. J Phys Chem 96:3185Google Scholar
  7. Chen Y, Wei L, Wang B, Lim S, Ciuparu D, Zheng M, Chen J, Zoican C, Yang Y, Haller GL, Pfefferle LD (2007) Low-defect, purified, narrowly (n, m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1:327–336CrossRefGoogle Scholar
  8. Choi J-G (1995) Reduction of supported cobalt catalysts by hydrogen. Catal Lett 35:291–296CrossRefGoogle Scholar
  9. Condon JB, Schober T (1993) Hydrogen bubbles in metals. J Nucl Mater 2007:1–24CrossRefGoogle Scholar
  10. Conner WWC, Falconer JL (2005) Spillover in heterogeneous catalysis. Chem Rev 95:759–788CrossRefGoogle Scholar
  11. Day TM, Unwin PR, Wilson NR, Macpherson JV (2005) Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc 127:10639–10647CrossRefGoogle Scholar
  12. Di Vece M, Grandjean D, Van Bael MJ, Romero CP, Wang X, Decoster S, Vantomme A, Lievens P (2008) Hydrogen-induced Ostwald ripening at room temperature in a Pd nanocluster film. Phys Rev Lett 100:236105CrossRefGoogle Scholar
  13. Di Vece M, Bals S, Verbeeck J, Lievens P, Van Tendeloo G (2009) Compositional changes of Pd–Au bimetallic nanoclusters upon hydrogenation. Phys Rev B 80:125420CrossRefGoogle Scholar
  14. Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spec 45:71–81CrossRefGoogle Scholar
  15. Fukai Y, Yokota S, Yanagawa J (2006) The phase diagram and superabundant vacancy formation in Co–H alloys. J Alloy Compd 407:16–24CrossRefGoogle Scholar
  16. Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2222CrossRefGoogle Scholar
  17. Hull AW (1921) X-ray crystal analysis of thirteen common metals. Phys Rev 17:571–588CrossRefGoogle Scholar
  18. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161:59–78CrossRefGoogle Scholar
  19. Jang E, Lim E-K, Choi J, Park J, Huh YJ, Suh JS, Huh YM, Haam S (2012) Br-Assisted Ostwald Ripening of Au nanoparticles under H2O2 Redox. Cryst Growth Des 12:37–39CrossRefGoogle Scholar
  20. Johnston RL (2002) Atomic and molecular clusters, 1st edn. Taylor & Francis, LondonCrossRefGoogle Scholar
  21. Jorio A, Fantini C, de Souza M, Saito R, Samsonidze GG, Dresselhaus G, Dresselhaus MS, Pimenta MA (2004) Raman on carbon nanotubes using a tunable laser and comparison with photoluminescence. In: Kuzmany H, Fink J, Mehring M, Roth S (eds) Electronic Properties of synthetic nanoparticle structures, American Institute of Physics conference proceeding, pp 157–162Google Scholar
  22. Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M (1997) Size effect on the crystal phase of cobalt fine particles. Phys Rev B 56:13849–13854CrossRefGoogle Scholar
  23. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Electronic shell structure and abundances of sodium clusters. Rev Lett 52:2141–2143CrossRefGoogle Scholar
  24. Lai MY, Wang YL (1998) Direct observation of two dimensional magic clusters. Phys Rev Lett 81:164–167CrossRefGoogle Scholar
  25. Lim S, Li N, Fang F, Pinault M, Zoican C, Wang C, Fadel T, Pfefferle LD, Haller GL (2008) High-yield single-walled carbon nanotubes synthesized on the small-pore (C10) Co-MCM-41 catalyst. J Phys Chem C 112:12442–12454CrossRefGoogle Scholar
  26. Lu Y, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyappan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344–348CrossRefGoogle Scholar
  27. Martin TP, Bergmann T, Gohlich H, Lange T (1990) Observation of electronic shells of atoms in large Na clusters. Chem Phys Lett 172:209–213CrossRefGoogle Scholar
  28. Maruyama S, Anderson LR, Smalley RE (1990) Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev Sci Instrum 61:3686–3693CrossRefGoogle Scholar
  29. Milani P, de Heer WA (1990) Improved pulsed laser vaporization source for production of intense beams of neutral and ionized clusters. Rev Sci Instrum 61:1835–1838CrossRefGoogle Scholar
  30. Milcius DD, Pranevicius LL, Templier C (2005) Hydrogen storage in the bubbles formed by high-flux ion implantation in thin Al films. J Alloys Compd 398:203–207CrossRefGoogle Scholar
  31. Natl. Bur. Stand. (US) (1960) Circulation 539:9–28 Google Scholar
  32. Nayak SK, Jena P, Stepanyuk VS, Hergert W, Wildberger K (1997) Magic numbers in supported metal clusters. Phys Rev B 56:6952–6957CrossRefGoogle Scholar
  33. Ostwald W (1900) On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z Phys Chem (Leipzig) 34:495–503Google Scholar
  34. Palasantzas G, Koch SA, Vystavel T, De Hosson JTM (2005) Nano-sized cobalt cluster films: structure and functionality. Adv Eng Mater 7:21–25Google Scholar
  35. Pan GZ, Tu KN, Prussin A (1996) Size-distribution and annealing behavior of end-of-range dislocation loops in silicon-implanted silicon. J Appl Phys 81:1Google Scholar
  36. Patterson AL (1939) The Scherrer formula for x-ray particle size determination. Phys Rev Lett 56:978–982Google Scholar
  37. Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube-nanocrystal heterostructures. Chem Soc Rev 38:1076–1098CrossRefGoogle Scholar
  38. Sato H, Kitakami O, Sakurai T, Shimada Y, Otani Y, Fukamichi K (1997) Structure and magnetism of hcp-Co fine particles. J Appl Phys 81:1858–1862CrossRefGoogle Scholar
  39. Schober T, Bechthold PS (1994) Hydrogen blisters on beta-NbD after laser pulse heating. J Appl Phys 76:2093–2096Google Scholar
  40. Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha-brass. Trans AIME 171:130–142Google Scholar
  41. Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494CrossRefGoogle Scholar
  42. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefGoogle Scholar
  43. Visintin A, Canullo JC, Tracia WE (1988) Changes in real surface area, crystallographic orientation and morphology of platinum-electrodes caused by periodic potential treatments-phenomenological approach Arvia. J Electroanal Chem 239:67CrossRefGoogle Scholar
  44. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231CrossRefGoogle Scholar
  45. Winter BJ, Klots TD, Parks EK, Riley SJ (1991) Chemical-identification of icosahedral structure for cobalt and nickel clusters. Z Phys D 19:375–380CrossRefGoogle Scholar
  46. Yao JH, Yao Elder KR, Guo H, Grant M (1993) Theory and simulation of Ostwald ripening. Phys Rev B 47(2):14110CrossRefGoogle Scholar
  47. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRefGoogle Scholar
  48. Yoo E, Gao L, Komatsu T, Yagai N, Arai K, Yamazaki T, Matsuishi, Matsumoto T, Nakamura J (2004) Atomic hydrogen storage in carbon nanotubes promoted by metal catalystsJ. Phys Chem B 108:18903–18907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marcel Di Vece
    • 1
    • 2
  • Codruta Zoican-Loebick
    • 1
  • Lisa D. Pfefferle
    • 1
  1. 1.Department of Chemical Engineering, School of Engineering & Applied ScienceYale UniversityNew HavenUSA
  2. 2.Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics-Physics of Devices, Soft Condensed MatterUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations