α-Alkyl cysteine-coated gold nanoparticles: effect of Cα-tetrasubstitution on colloidal stability

  • Iñaki Osante
  • Ester Polo
  • Guillermo Revilla-López
  • Jesús M. de la Fuente
  • Carlos Alemán
  • Carlos Cativiela
  • David Díaz Díaz
Research Paper

Abstract

In this work, we report the synthesis of new α-methyl l-cysteine-coated gold nanoparticles (average core diameter ca. 3 nm) and the remarkable enhancement of their aqueous stability against aggregation in comparison with the nanoparticles capped with unmodified l-cysteine under the same experimental conditions. Atomistic molecular dynamics simulations of model gold surfaces capped with l-cysteine or α-methyl l-cysteine revealed important differences in both the organization of the amino acids with respect to the surface and their spontaneous assembly with neighboring molecules. These differences, which are originated by the introduction of the α-methyl group in the amino acid, could be associated with the observed increase in stability and dispersibility of the composites in aqueous solutions at different pH values and ionic concentrations.

Keywords

Gold nanoparticles Cysteine Cα-tetrasubstitution Colloidal stability Molecular dynamics Modeling and simulation 

Supplementary material

11051_2013_2224_MOESM1_ESM.pdf (30 mb)
Supplementary material 1 (PDF 30769 kb)

References

  1. Abraham A, Mihaliuk E, Kumar B, Legleiter J, Gullion T (2010) Solid-state NMR study of cysteine on gold nanoparticles. J Phys Chem C 114(42):18109–18114CrossRefGoogle Scholar
  2. Alemán C, Jiménez AI, Cativiela C, Pérez JJ, Casanovas J (2002) Influence of the phenyl side chain on the conformation of cyclopropane analogues of phenylalanine. J Phys Chem B 106(45):11849–11858CrossRefGoogle Scholar
  3. Aryal S, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectroscopic identification of S Au interaction in cysteine capped gold nanoparticles. Spectrochim Acta A 63(1):160–163CrossRefGoogle Scholar
  4. Barnard AS, Lin XM, Curtiss LA (2005) Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. J Phys Chem B 109(51):24465–24472CrossRefGoogle Scholar
  5. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  6. Carr J, Wang H, Abraham A, Gullion T (2012) l-Cysteine interactions with Au55 nanoparticle. J Phys Chem C 116(49):25816–25823CrossRefGoogle Scholar
  7. Casanovas J, Revilla-López G, Crisma M, Toniolo C, Alemán C (2012) Factors governing the conformational tendencies of C(α)-ethylated α-amino acids: chirality and side-chain size effects. J Phys Chem B 116(45):13297–13307CrossRefGoogle Scholar
  8. Chai F, Wang C, Wang T, Ma Z, Su Z (2010) l-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21(2):025501CrossRefGoogle Scholar
  9. Cornell WD, Cieplak P, Bayly CL, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197CrossRefGoogle Scholar
  10. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  11. De la Fuente J, Berry CC, Riehle MO, Curtis ASG (2006) Nanoparticle targeting at cells. Langmuir 22(7):3286–3293CrossRefGoogle Scholar
  12. Di J, Peng S, Shen C, Gao Y, Tu Y (2007) One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron 23(1):88–94CrossRefGoogle Scholar
  13. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefGoogle Scholar
  14. Dua S, Wanga X, Suna X, Lia Q (2012) Amperometric immunosensor based on l-cysteine/gold colloidal nanoparticles for carbofuran detection. Anal Lett 45(10):1230–1241CrossRefGoogle Scholar
  15. Häkkinen H (2012) The gold–sulfur interface at the nanoscale. Nat Chem 4(6):443–455CrossRefGoogle Scholar
  16. Hayat MA (1991) Colloidal gold: principles, methods, and applications. Academic Press, San DiegoGoogle Scholar
  17. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30CrossRefGoogle Scholar
  18. Iori F, Di Felice R, Molinari E, Corni S (2009) GoIP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem 30(9):1465–1476CrossRefGoogle Scholar
  19. Jadhav SA (2012) Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles. J Mater Chem 22(13):5894–5899CrossRefGoogle Scholar
  20. Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW (2003) Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J Am Chem Soc 125(24):7148–7149CrossRefGoogle Scholar
  21. Jeanguenat A, Seebach D (1991) Stereoselective chain elongation at C-3 of cysteine through 2,3-dihydrothiazoles, without racemization. Preparation of 2-amino-5-hydroxy-3-mercaptoalkanoic acid derivatives. J Chem Soc Perking Trans 1(10):2291–2298CrossRefGoogle Scholar
  22. Jing C, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of l-cysteine on gold/silver nanoparticles. Chem Phys 332(1):27–32CrossRefGoogle Scholar
  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  24. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111(1):1–35CrossRefGoogle Scholar
  25. Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19(15):6277–6282CrossRefGoogle Scholar
  26. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134(38):15607–15620CrossRefGoogle Scholar
  27. Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA (2012) Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161(2):164–174CrossRefGoogle Scholar
  28. Majzik A, Patakfalvi R, Hornok V, Défány I (2009) Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull 42(2):113–123CrossRefGoogle Scholar
  29. Mocanu A, Cernica I, Tomoaia G, Bobos L-D, Horovitz O, Tomoaia-Cotisel M (2009) Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf A Physicochem Eng Aspects 338(1–3):93–101CrossRefGoogle Scholar
  30. Mulqueen GC, Pattenden G, Whiting DA (1993) Synthesis of the thiazoline-based siderophore (S)-desferrithiocin. Tetrahedron 49(24):5359–5364CrossRefGoogle Scholar
  31. Naka K, Itoh H, Tampo Y, Chujo Y (2003) Effect of gold nanoparticles as a support for the oligomerization of l-cysteine in an aqueous solution. Langmuir 19(13):5546–5549CrossRefGoogle Scholar
  32. Pattenden G, Thom SM, Jones MF (1993) Enantioselective Synthesis of 2-alkyl substituted cysteines. Tetrahedron 49(10):2131–2138CrossRefGoogle Scholar
  33. Pensa E, Cortés E, Corthey G, Carro P, Vericat C, Fonticelli MH, Benítez G, Rubert AA, Savarezza RC (2012) The chemistry of the sulfur–gold interface: in search of a unified model. Acc Chem Res 45(8):1183–1192CrossRefGoogle Scholar
  34. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefGoogle Scholar
  35. Prats-Alfonso E, Albericio F (2011) Functionalization of gold surfaces: recent developments and applications. J Mater Sci 46(24):7643–7648CrossRefGoogle Scholar
  36. Rajesh S, Arivudainambi USE, Rajasingh S, Rajendran A, Kotamraju S, Karunakaran C (2010) Superoxide anion radical biosensor using self-assembled cysteine monolayer on gold nanoparticles in polypyrrole matrix facilitated electron transfer in Cu, ZnSOD. Sensor Lett 8(4):613–621CrossRefGoogle Scholar
  37. Rautaray D, Kumar A, Reddy S, Sainkar SR, Sastry M (2002) Morphology of BaSO4 crystals grown on templates of varying dimensionality: the case of cysteine-capped gold nanoparticles (0-D), DNA (1-D), and lipid bilayer stacks (2-D). Cryst Growth Des 2(3):197–203CrossRefGoogle Scholar
  38. Řezanka P, Řezanková H, Matějka P, Král V (2010) The chemometric analysis of UV–visible spectra as a new approach to the study of the NaCl influence on aggregation of cysteine-capped gold nanoparticles. Colloid Surf A 364(1–3):94–98CrossRefGoogle Scholar
  39. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  40. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):1384–13851CrossRefGoogle Scholar
  41. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B Condens Mater Phys 5(12):4709–4714CrossRefGoogle Scholar
  42. Srisombat L, Jamison AC, Lee TR (2011) Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloid Surf A 390(1–3):1–19CrossRefGoogle Scholar
  43. Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 15(1):66–76CrossRefGoogle Scholar
  44. Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113(24):10913–10927CrossRefGoogle Scholar
  45. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074CrossRefGoogle Scholar
  46. Wang G, Huang H, Zhang G, Zhang X, Fang B, Wang L (2010) Gold nanoparticles/l-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Anal Methods 2(11):1692–1697CrossRefGoogle Scholar
  47. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-cysteine. Analyst 136(18):3725–3730CrossRefGoogle Scholar
  48. Yang W, Gooding JJ, He Z, Li Q, Chen G (2007) Fast colorimetric detection of copper ions using l-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7(2):712–716Google Scholar
  49. Yang G, Yuan R, Chai Y-Q (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/l-cysteine/gold colloid/nanoparticles Pt–chitosan composite film-modified platinum disk electrode. Colloids Suf B Biointerfaces 61(1):93–100CrossRefGoogle Scholar
  50. Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Iñaki Osante
    • 1
  • Ester Polo
    • 2
  • Guillermo Revilla-López
    • 3
  • Jesús M. de la Fuente
    • 2
  • Carlos Alemán
    • 3
    • 4
  • Carlos Cativiela
    • 1
  • David Díaz Díaz
    • 1
    • 5
    • 6
  1. 1.Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de ZaragozaZaragozaSpain
  2. 2.Instituto de Nanociencia de AragónUniversidad de ZaragozaZaragozaSpain
  3. 3.Departament d’Enginyeria Química, ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Center for Research in Nano-EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
  5. 5.IQAC-CSICBarcelonaSpain
  6. 6.Institut für Organische Chemie, Fakultät für Chemie und PharmazieUniversität RegensburgRegensburgGermany

Personalised recommendations