Advertisement

Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins

  • Ingke-Christine Masthoff
  • Florian David
  • Christoph Wittmann
  • Georg GarnweitnerEmail author
Research Paper

Abstract

Magnetic nanoparticles with immobilized metal ligands were prepared for the separation of antibody fragments. First, iron oxide nanoparticles were produced in a solvothermal synthesis using triethylene glycol as solvent and iron(III) acetylacetonate as organic precursor. Via functionalization of the particles with priorly reacted 3-glycidoxypropyltrimethoxysilane and N α,N α-bis(carboxymethyl)-l-lysine (NTA), and charging with Ni2+, magnetic affinity adsorbents were obtained. The particles were applied to separate a His-tagged antibody fragment from a heterogeneous protein mixture of a microbial cultivation supernatant. Binding properties and specificity for purification of the target product ABF D1.3 scFv were optimized regarding the GNTA concentration and were found superior as compared to commercially available systems. A molar ratio of 1:2 Fe2O3:GNTA was most beneficial for the specific purification of the antibody fragment.

Keywords

Iron oxide nanoparticles Protein purification His-tag Bacillus megaterium Antibody fragment Non-aqueous synthesis 

Notes

Acknowledgments

The authors thank Prof. G. Goya and G. Antorrena Pardo, University of Zaragoza, Spain, for the XPS analysis, and D. Menzel, Institute for Condensed Matter Physics, TU Braunschweig, for the Raman analysis. R. Pitschke and Prof. M. Antonietti, Max Planck Institute for Colloids and Interfaces, Potsdam, are gratefully acknowledged for the TEM measurements. We also thank Miriam Steinwand and Prof. Stefan Dübel, Institute of Biochemistry, Biotechnology and Bioinformatics, for provision of the D1.3 scFv antibody standard. This work was kindly supported by the German Research Foundation via the Collaborative Research Center (SFB 578-From Gene to Product) at TU Braunschweig.

Supplementary material

11051_2013_2164_MOESM1_ESM.pdf (880 kb)
Supplementary material 1 (PDF 880 KB)

References

  1. Anspach FB (1994) Silica-based metal chelate affinity sorbents. I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques. J Chromatogr A 672(1–2):35–49. doi: 10.1016/0021-9673(94)80592-X CrossRefGoogle Scholar
  2. Arias JL, Lopez-Viota M, Ruiz MA, Lopez-Viota J, Delgado AV (2007) Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. Int J Pharm 339(12):237–245. doi: 10.1016/j.ijpharm.2007.02.028 CrossRefGoogle Scholar
  3. Bucak S, Jones DA, Laibinis PE, Hatton TA (2003) Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog 19(2):477–484. doi: 10.1021/bp0200853 CrossRefGoogle Scholar
  4. Chang J, Kang K, Choi J, Jeong Y (2008) High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattices Microstruct 44(4–5):442–448. doi: 10.1016/j.spmi.2007.12.006 CrossRefGoogle Scholar
  5. Cristancho CAM, David F, Franco-Lara E, Seidel-Morgenstern A (2013) Discontinuous and continuous purification of single-chain antibody fragments using immobilized metal ion affinity chromatography. J Biotechnol 163(2):233–242. doi: 10.1016/j.jbiotec.2012.08.022 CrossRefGoogle Scholar
  6. Csetneki I, Faix MK, Szilagyi A, Kovacs AL, Nemeth Z, Zrinyi M (2004) Preparation of magnetic polystyrene latex via the miniemulsion polymerization technique. J Polym Sci A Polym Chem 42(19):4802–4808. doi: 10.1002/pola.20300 CrossRefGoogle Scholar
  7. David F, Steinwand M, Hust M, Bohle K, Ross A, Dübel S, Franco-Lara E (2011) Antibody production in Bacillus megaterium: strategies and physiological implications of scaling from microtiter plates to industrial bioreactors. Biotechnol J 6(12):1516–1531. doi: 10.1002/biot.201000417 CrossRefGoogle Scholar
  8. De Faria DLA, Venancio Silva S, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878. doi:10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-BGoogle Scholar
  9. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168. doi: 10.2217/17435889.1.2.157 CrossRefGoogle Scholar
  10. Durdureanu-Angheluta A, Dascalu A, Fifere A, Coroaba A, Pricop L, Chiriac H, Tura V, Pinteala M, Simionescu BC (2012) Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface. J Magn Magn Mater 324(9):1679–1689. doi: 10.1016/j.jmmm.2011.11.062 CrossRefGoogle Scholar
  11. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37. doi: 10.1007/BF03245856 CrossRefGoogle Scholar
  12. Frenzel A, Fröde D, Meyer T, Schirrmann T, Hust M (2012) Generating recombinant antibodies for research, diagnostics and therapy using phage display. Curr Biotechnol 1:31–41. doi: 10.2174/2211550111201010033 CrossRefGoogle Scholar
  13. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. doi: 10.1021/cr100449n CrossRefGoogle Scholar
  14. Grabs IM, Bradtmöller C, Menzel D, Garnweitner G. (2012) Formation mechanisms of iron oxide nanoparticles in different nonaqueous media. Cryst Growth Des 12(3):1469–1475. doi: 10.1021/cg201563h CrossRefGoogle Scholar
  15. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574. doi: 10.1002/sia.1984 CrossRefGoogle Scholar
  16. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949. doi: 10.1039/B514130C CrossRefGoogle Scholar
  17. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012 CrossRefGoogle Scholar
  18. Hainfeld JF, Liu W, Halsey CMR, Freimuth P, Powell RD (1999) Ni-NTA gold clusters target His-tagged proteins. J Struct Biol 127(2):185–198. doi: 10.1006/jsbi.1999.4149 CrossRefGoogle Scholar
  19. Heyd M, Franzreb M, Berensmeier S (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Prog 27(3):706–716. doi: 10.1002/btpr.607 CrossRefGoogle Scholar
  20. Käppler T, Cerff M, Ottow K, Hobley T, Posten C (2009) In situ magnetic separation for extracellular protein production. Biotechnol Bioeng 102(2):535–545. doi: 10.1002/bit.22064 CrossRefGoogle Scholar
  21. Khurshid H, Kim SH, Bonder MJ, Colak L, Ali B, Shah SI, Kiick KL, Hadjipanayis GC (2009) Development of heparin-coated magnetic nanoparticles for targeted drug delivery applications. J Appl Phys 105(7):07B308. doi: 10.1063/1.3068018 CrossRefGoogle Scholar
  22. Ki-Chul K, Eung-Kwon K, Jae-One L, Young-Sung K (2006) Characterization of magnetic nanoparticles synthesized by sonomechanical method. In: Nanotechnology Materials and Devices Conference, 2006. NMDC 2006. IEEE, vol 1, pp 600–601. doi: 10.1109/NMDC.2006.4388922
  23. Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128(33):10,658–10,659. doi: 10.1021/ja063177n CrossRefGoogle Scholar
  24. Lee S, Ahn C, Lee J, Lee J, Chang J (2012) Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. Nanoscale Res Lett 7:279. doi: 10.1186/1556-276X-7-279 CrossRefGoogle Scholar
  25. Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63. doi: 10.1016/j.jchromb.2006.10.033 CrossRefGoogle Scholar
  26. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49(11):1521–1529. doi: 10.1002/sia.1984 CrossRefGoogle Scholar
  27. Minati L, Micheli V, Rossi B, Migliaresi C, Dalbosco L, Bao G, Hou S, Speranza G (2011) Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles. Appl Surf Sci 257(24):10,863–10,868. doi: 10.1016/j.apsusc.2011.07.123 CrossRefGoogle Scholar
  28. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175. doi: 10.1039/b402025a CrossRefGoogle Scholar
  29. Palecek E, Fojta M (2007) Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 74(3):276–290. doi: 10.1016/j.talanta.2007.08.020 CrossRefGoogle Scholar
  30. Roque A, Cecilia A, Lowe CR, Taipa MA (2004) Antibodies and genetically engineered related molecules: production and purification. Biotechnol Prog 20(3):639–654. doi: 10.1021/bp030070k CrossRefGoogle Scholar
  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  32. Shieh DB, Su CH, Chang FY, Wu YN, Su WC, Hwu J, Chen JH, Yeh CS (2006) Aqueous nickel-nitrilotriacetate modified Fe3O4–NH3+ nanoparticles for protein purification and cell targeting. Nanotechnology 17(16):4174–4182. doi: 10.1088/0957-4484/17/16/030 CrossRefGoogle Scholar
  33. Sopaci S, Simsek I, Tural B, Volkan M, Demir A (2009) Carboligation reactions with benzaldehyde lyase immobilized on superparamagnetic solid support. Org Biomol Chem 7(8):1658–1664. doi: 10.1039/b819722a CrossRefGoogle Scholar
  34. Suzer S, Baer DR, Engelhard MH (2010) Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias. Surf Interface Anal 42(6–7):859–862. doi: 10.1002/sia.3260 CrossRefGoogle Scholar
  35. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939. doi: 10.1021/ja0464802 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ingke-Christine Masthoff
    • 1
  • Florian David
    • 2
  • Christoph Wittmann
    • 2
  • Georg Garnweitner
    • 1
    Email author
  1. 1.Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweig Germany
  2. 2.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations