Advertisement

Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study

  • Ming-Chung Wu
  • Hsueh-Chung Liao
  • Yu-Cheng Cho
  • Che-Pu Hsu
  • Ting-Han Lin
  • Wei-Fang Su
  • András Sápi
  • Ákos Kukovecz
  • Zoltán Kónya
  • Andrey Shchukarev
  • Anjana Sarkar
  • William Larsson
  • Jyri-Pekka Mikkola
  • Melinda Mohl
  • Géza Tóth
  • Heli Jantunen
  • Anna Valtanen
  • Mika Huuhtanen
  • Riitta L. Keiski
  • Krisztián Kordás
Research Paper

Abstract

In this study, a set of nitrogen-doped TiO2-based nanomaterials demonstrating photocatalytic activity was developed by combining the efforts of lattice doping and metal nanoparticle decoration and tested for photo-degradation of methylene blue dye by applying solar simulator irradiation. The surface potential shifts of these TiO2-based photocatalytic nanomaterials measured by Kelvin probe force microscope have been used to study the degree of electron generation of the photocatalysts after irradiation and were well correlated with the photocatalytic activity. The nitrogen-doped TiO2 nanowires decorated with Pt nanoparticles can induce obvious electron accumulation and result in a large shift of surface potential. The analysis shows a clear correlation between the surface potential shift and the photodegradation activity. Furthermore, a thorough comparative photocatalytic activity study combined with X-ray photoelectron spectroscopy analysis of the materials—doped with nitrogen under various conditions—reveals that the photocatalytic efficiency of the catalysts is maintained even if the lattice doping is leached e.g., by thermal treatments after doping.

Graphical Abstract

By monitoring the surface potential shifts of various TiO2-based photocatalysts by photo-assisted Kelvin probe force microscopy, we obtain a useful tool for developing novel materials with high photocatalytic activity.

Keywords

Kelvin probe force microscopy Photocatalyst TiO2 Surface potential Nanostructured catalyst Photodegradation 

Notes

Acknowledgments

The authors are grateful for financial support received from National Science Council of Taiwan (102-2633-E-182-001 and 102-2622-E-182-005-CC3), Chang Gung University Research Project, Finnish Funding Agency for Technology and Innovation (project, Imphona), Academy of Finland (project, Optifu), European Union Framework Programme 7 (project, Napep) as well as Kempe Foundations and Bio4Eneregy program in Sweden. The financial support of TÁMOP-4.2.2.A-11/1/KONV-2012-0047 project is acknowledged.

Supplementary material

11051_2013_2143_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 80 kb)

References

  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269. doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  2. Bamwenda GR, Tsubota S, Nalamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au–TiO2 and Pt–TiO2. J Photochem Photobiol A 89:177. doi: 10.1016/1010-6030(95)04039-I CrossRefGoogle Scholar
  3. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96:026103. doi: 10.1103/PhysRevLett.96.026103 CrossRefGoogle Scholar
  4. Bieletzki M, Hynninen T, Soini TM, Pivetta M, Henry CR, Foster AS, Esch F, Barth C, Heiz U (2010) Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. Phys Chem Chem Phys 12:3203. doi: 10.1039/b923296f CrossRefGoogle Scholar
  5. Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Gold-nanoparticle-doped TiO2 semiconductor thin films: optical characterization. Adv Funct Mater 17:347. doi: 10.1002/adfm.200600349 CrossRefGoogle Scholar
  6. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746. doi: 10.1126/science.1200448 CrossRefGoogle Scholar
  7. Chiesa M, Bürgi L, Kim JS, Shikler R, Friend RH, Sirringhaus H (2005) Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. Nano Lett 5:559. doi: 10.1021/nl047929s CrossRefGoogle Scholar
  8. Feist TP, Davies PK (1992) The soft chemical synthesis of TiO2(B) from layered titanates. J Solid State Chem 101:275. doi: 10.1016/0022-4596(92)90184-W CrossRefGoogle Scholar
  9. Fujino T, Katayama M, Inudzuka K, Okuno T, Oura K, Hirao T (2001) Surface hydroxyl formation on vacuum-annealed TiO2(110). Appl Phys Lett 79:2716. doi: 10.1063/1.1412427 CrossRefGoogle Scholar
  10. Glatzel T, Fuertes Marrón D, Schedel-Niedrig T, Sadewasser S, Lux-Steiner MC (2002) CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum. Appl Phys Lett 81:2017. doi: 10.1063/1.1506205 CrossRefGoogle Scholar
  11. Glatzel T, Rusu M, Sadewasser S, Lux-Steiner MC (2008) Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy. Nanotechnology 19:145705. doi: 10.1088/0957-4484/19/14/145705 CrossRefGoogle Scholar
  12. Hoppe H, Glatzel T, Niggemann M, Hinsch A, Lux-Steiner MC, Sariciftci NS (2005) Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett 5:269. doi: 10.1021/nl048176c CrossRefGoogle Scholar
  13. Horvath E, Kukovecz A, Konya Z, Kiricsi I (2007) Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem Mater 19:927. doi: 10.1021/cm062413q CrossRefGoogle Scholar
  14. Katti A, Venna SR, Carreon MA (2009) Self-assembly hydrothermal assisted synthesis of mesoporous anatase in the presence of ethylene glycol. Catal Commun 10:2036. doi: 10.1016/j.catcom.2009.07.026
  15. Khan S, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243. doi: 10.1126/science.1075035 CrossRefGoogle Scholar
  16. Lee KM, Wu SJ, Chen CY, Wu CG, Ikegami M, Miyoshi K, Miyasaka T, Ho KC (2012) Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J Mater Chem 19:5009. doi: 10.1039/b903852c CrossRefGoogle Scholar
  17. Liao WP, Hsu SC, Lin WH, Wu JJ (2012) Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification. J Phys Chem C 116:15938. doi: 10.1039/b903852c CrossRefGoogle Scholar
  18. Lin CH, Chao JH, Liu CH, Chang JC, Wang FC (2008) Effect of calcination temperature on the structure of a Pt/TiO2(B) nanofiber and its photocatalytic activity in generating H2. Langmuir 24:9907. doi: 10.1021/la800572g CrossRefGoogle Scholar
  19. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. Chem Rev 95:735. doi: 10.1021/cr00035a013 CrossRefGoogle Scholar
  20. Liscio A, Luca GD, Nolde F, Palermo V, Müllen K, Samorì P (2008) Photovoltaic charge generation visualized at the nanoscale: a proof of principle. J Am Chem Soc 130:780. doi: 10.1021/ja075291r CrossRefGoogle Scholar
  21. Liu L, Li G (2010) Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy. Appl Phys Lett 96:083302. doi: 10.1063/1.3332489 CrossRefGoogle Scholar
  22. Palermo V, Palma M, Samorì P (2006) Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv Mater 18:145. doi: 10.1002/adma.200501394 CrossRefGoogle Scholar
  23. Palermo V, Ridolfi G, Talarico AM, Favaretto L, Barbarella G, Camaioni N, Samorì P (2007) A Kelvin probe force microscopy study of the photogeneration of surface charges in all-thiophene photovoltaic blends. Adv Funct Mater 17:472. doi: 10.1002/adfm.200600122 CrossRefGoogle Scholar
  24. Palermo V, Otten MBJ, Liscio A, Schwartz E, de Witte PAJ, Castriciano MA, Wienk MM, Nolde F, De Luca G, Cornelissen JJLM, Janssen RAJ, Müllen K, Rowan AE, Nolte RJM, Samorì P (2008) The relationship between nanoscale architecture and function in photovoltaic multichromophoric arrays as visualized by Kelvin probe force microscopy. J Am Chem Soc 130:14605. doi: 10.1021/ja804069n CrossRefGoogle Scholar
  25. Qi F, Moiseev A, Deubener J, Weber A (2011) Thermostable photocatalytically active TiO2 anatase nanoparticles. J Nanopart Res 13:1325. doi: 10.1007/s11051-010-0211-0 CrossRefGoogle Scholar
  26. Roy S, Hegde MS, Ravishankar N, Madras G (2007) Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J Phys Chem C 111:8153. doi: 10.1021/jp066145v CrossRefGoogle Scholar
  27. Saif M, Aboul-Fotouh SMK, El-Molla SA, Ibrahim MM, Ismail LFM (2012) Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater. J Nanopart Res 14:1227. doi: 10.1007/s11051-012-1227-4 CrossRefGoogle Scholar
  28. Sarkar A, Shchukarev A, Leino A-R, Kordas K, Mikkola J-P, Petrov PO, Tuchina ES, Popov AP, Darvin ME, Meinke MC, Lademann J, Tuchin VV (2012) Photocatalytic activity of TiO2 nanoparticles: effect of thermal annealing under various gaseous atmospheres. Nanotechnology 23:475711. doi: 10.1088/0957-4484/23/47/475711 CrossRefGoogle Scholar
  29. Spadafora EJ, Demadrille R, Ratier B, Grvin B (2010) Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by kelvin probe force microscopy. Nano Lett 10:3337. doi: 10.1021/nl101001d CrossRefGoogle Scholar
  30. Spadavecchia F, Ardizzone S, Cappelletti G, Oliva C, Cappelli S (2012) Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources. J Nanopart Res 14:1301. doi: 10.1007/s11051-012-1301-y CrossRefGoogle Scholar
  31. Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290. doi: 10.1021/ja903781h CrossRefGoogle Scholar
  32. Wu MC, Lin YY, Chen S, Liao HC, Wu YJ, Chen CW, Chen YF, Su WF (2009) Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes. Chem Phys Lett 468:64. doi: 10.1016/j.cplett.2008.11.080 CrossRefGoogle Scholar
  33. Wu MC, Wu YJ, Yen WC, Lo HH, Lin CF, Su WF (2010) Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices. Nanoscale 2:1448. doi: 10.1039/B9NR00385A CrossRefGoogle Scholar
  34. Wu MC, Hiltunen JT, Sápi A, Avila A, Larsson W, Liao HC, Huuhtanen M, Tóth G, Shchukarev A, Laufer N, Kukovecz A, Konya Z, Mikkola JP, Keiski R, Su WF, Chen YF, Jantunen H, Ajayan PM, Vajtai R, Kordás K (2011a) Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. ACS Nano 5:5025. doi: 10.1021/nn201111j CrossRefGoogle Scholar
  35. Wu MC, Sápi A, Avila A, Szab M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz A, Konya Z, Keiski R, Su WF, Jantunen H, Kordás K (2011b) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res 4:360. doi: 10.1007/s12274-010-0090-9 CrossRefGoogle Scholar
  36. Wu MC, Tóth G, Sápi A, Leino AR, Konya Z, Kukovecz A, Su WF, Kordás K (2012) Synthesis and photocatalytic performance of titanium dioxide nanofibers and the fabrication of flexible composite films from nanofibers. J Nanosci Nanotechnol 12:1421. doi: 10.1166/jnn.2012.4655 CrossRefGoogle Scholar
  37. Wu MC, Liao HC, Cho YC, Tóth G, Chen YF, Su WF, Kordás K (2013) Photo-Kelvin probe force microscopy for photocatalytic performance characterization of single filament of TiO2 nanofiber photocatalysts. J Mater Chem A 1:5715. doi: 10.1039/c3ta01011b CrossRefGoogle Scholar
  38. Zhang Q, Deng X, Qian PZG, Wang X (2013) Spatial modelling for refining and predicting surface potential mapping with enhanced resolution. Nanoscale 5:921. doi: 10.1039/C2NR33603K CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ming-Chung Wu
    • 1
  • Hsueh-Chung Liao
    • 2
  • Yu-Cheng Cho
    • 2
  • Che-Pu Hsu
    • 2
  • Ting-Han Lin
    • 1
  • Wei-Fang Su
    • 2
  • András Sápi
    • 3
  • Ákos Kukovecz
    • 3
    • 4
  • Zoltán Kónya
    • 3
    • 5
  • Andrey Shchukarev
    • 6
  • Anjana Sarkar
    • 6
  • William Larsson
    • 6
  • Jyri-Pekka Mikkola
    • 6
    • 9
  • Melinda Mohl
    • 7
  • Géza Tóth
    • 7
  • Heli Jantunen
    • 7
  • Anna Valtanen
    • 8
  • Mika Huuhtanen
    • 8
  • Riitta L. Keiski
    • 8
  • Krisztián Kordás
    • 7
  1. 1.Department of Chemical and Materials Engineering, College of EngineeringChang Gung UniversityTaoyuanTaiwan
  2. 2.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  4. 4.MTA-SZTE “Lendület” Porous Nanocomposites Research GroupSzegedHungary
  5. 5.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary
  6. 6.Technical Chemistry, Department of ChemistryUmeå UniversityUmeåSweden
  7. 7.Microelectronics and Materials Physics Laboratories, Department of Electrical Engineering, EMPART Research Group of Infotech OuluUniversity of OuluOuluFinland
  8. 8.Mass and Heat Transfer Process Laboratory, Department of Process and Environmental EngineeringUniversity of OuluOuluFinland
  9. 9.Industrial Chemistry & Reaction Engineering, Process Chemistry CentreÅbo Akademi UniversityÅbo-TurkuFinland

Personalised recommendations