Self-assembly epitaxial growth of nanorods on nanowalls in hierarchical ZnO hexagonal nanocastle

  • Chenlong Chen
  • Tao Yan
  • Mitch M. C. Chou
  • Chun-Yu Lee
  • Bang-Min Wang
  • Meng-Jie Wen
  • Xingwang Zhang
Research Paper
  • 300 Downloads

Abstract

Three-dimensional (3D) hierarchical porous nanostructure materials with controlled morphology have attracted much attention for their unique properties and wide applications. In the present work, a novel 3D hierarchical ZnO nanostructure was prepared through chemical vapor deposition, which is self-assembled by an array of vertical 1D nanorods on top of 2D nanowalls network in 3D hexagonal nanocastle. As revealed by transmission electron microscopy, the hierarchical nanostructures are composed of single crystal ZnO along the [0001] direction, and the preferred surfaces of nanowalls are \(\{ 10\bar{1}0\}\). Based on those experimental results, a growth mechanism which involves a Zn-self-catalytic vapor–liquid–solid and vapor–solid mode is proposed to explain the formation of nanorods on nanowalls in 3D nanocastle. Raman and photoluminescence spectrum demonstrated that these 3D hierarchical ZnO nanostructures are nearly free of strain and exhibit an intense ultraviolet emission at 377.6 nm with negligible defect-related green bands.

Keywords

ZnO Nanostructure Nanorod Nanowall Chemical vapor deposition Three-dimensional hierarchical composite nanostructures 

Notes

Acknowledgments

The authors would like to express their thanks to Dr. Yen-wen Chen in Center for Nanoscience & Nanotechnology NSYSU and NSC Core Facilities Lab in Kaohsiung–Pingtung Area for the fabrication of TEM samples. This work is partly supported by the National Science Council of Taiwan (NSC 101-2119-M-110-001). We acknowledge financial support from AIM for the Top University Plan of National Sun Yat-sen University, Taiwan.

References

  1. Bai Y, Yu H, Li Z, Amal R, Lu GQ, Wang LZ (2012) In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24:5850–5856CrossRefGoogle Scholar
  2. Barick KC, Nigam S, Bahadur D (2010) Nanoscale assembly of mesoporous ZnO: a potential drug carrier. J Mater Chem 20:6446–6452CrossRefGoogle Scholar
  3. Bechelany M, Amin A, Brioude A, Cornu D, Miele P (2012) ZnO nanotubes by template-assisted sol–gel route. J Nanopart Res 14:980CrossRefGoogle Scholar
  4. Chang L, Chou MMC, Huang TH, Chen CW (2009) Growth behavior and microstructure of ZnO epilayer on γ-LiAlO2 (100) substrate by chemical vapor deposition. Phys Status Solidi A 206:215–219CrossRefGoogle Scholar
  5. Chen CL, Lan YT, Chou MMC, Hang DR, Yan T, Feng H, Lee CY, Chang SY, Li CA (2012) Growth and characterization of vertically aligned nonpolar \([ 1 \overline{1} 0 0]\) orientation ZnO nanostructures on (100) γ-LiAlO2 substrate. Cryst Growth Des 12:6208–6214CrossRefGoogle Scholar
  6. Chou MMC, Chang L, Chung HY, Huang TH, Wu JJ, Chen CW (2007a) Growth and characterization of nonpolar ZnO epitaxial film on γ-LiAlO2 substrate by chemical vapor deposition. J Cryst Growth 308:412–416CrossRefGoogle Scholar
  7. Chou MMC, Huang SJ, Hsu CWC (2007b) Crystal growth and polishing method of lithium aluminum oxide crystal. J Cryst Growth 303:585–589CrossRefGoogle Scholar
  8. Chou MMC, Chang L, Hang DR, Chen CL, Chang DS, Li CA (2009) Crystal growth of nonpolar m-plane ZnO on a lattice-matched (100) γ-LiAlO2 substrate. Cryst Growth Des 9:2073–2078CrossRefGoogle Scholar
  9. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRefGoogle Scholar
  10. Dong JJ, Zhang XW, Yin ZG, Zhang SG, Wang JX, Tan HR, Gao Y, Si FT, Gao HL (2011) Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template. ACS Appl Mater Interfaces 3:4388–4395CrossRefGoogle Scholar
  11. Gao PX, Wang ZL (2003) Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J Am Chem Soc 125:11299–11305CrossRefGoogle Scholar
  12. Gao P, Ying C, Wang S, Ye L, Guo Q, Xie Y (2006) Low temperature hydrothermal synthesis of ZnO nanodisk arrays utilizing self-assembly of surfactant molecules at solid-liquid interfaces. J Nanopart Res 8:131–136CrossRefGoogle Scholar
  13. Hill N, Waghmare U (2000) First-principles study of strain-electronic interplay in ZnO: Stress and temperature dependence of the piezoelectric constants. Phys Rev B 62:8802–8810CrossRefGoogle Scholar
  14. Hosono E, Fujihara S, Honna I, Zhou HS (2005) The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv Mater 17:2091–2094CrossRefGoogle Scholar
  15. Hu P, Liu Y, Wang X, Fu L, Zhu D (2003) Tower-like structure of ZnO nanocolumns. Chem Commun 11:1304–1305CrossRefGoogle Scholar
  16. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001a) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899CrossRefGoogle Scholar
  17. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD (2001b) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRefGoogle Scholar
  18. Jing ZH, Zhan JH (2008) Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv Mater 20:4547–4551CrossRefGoogle Scholar
  19. Kowsari E (2011) Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J Nanopart Res 13:3363–3376CrossRefGoogle Scholar
  20. Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW (2011) Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5:4197–4204CrossRefGoogle Scholar
  21. Law M, Goldberg J, Yang PD (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRefGoogle Scholar
  22. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80:383–387CrossRefGoogle Scholar
  23. Miao TT, Guo YR, Pan QJ (2013) The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity. J Nanopart Res 15:1725CrossRefGoogle Scholar
  24. Min J, Liang X, Wang B, Wang L, Zhao Y, Shi W, Xia Y (2011) The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods. J Nanopart Res 13:5171–5176CrossRefGoogle Scholar
  25. Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, Meyyappan M (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249CrossRefGoogle Scholar
  26. Özgür Ü, YaI Alivov, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  27. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949CrossRefGoogle Scholar
  28. Park JH, Choi HJ, Choi YJ, Sohn SH, Park JG (2004) Ultrawide ZnO nanosheets. J Mater Chem 14:35–36CrossRefGoogle Scholar
  29. Song T, Choung JW, Park JG, Park WI, Rogers JA, Paik U (2008) Surface polarity and shape-controlled synthesis of ZnO nanostructures on GaN thin films based on catalyst-free metalorganic vapor phase epitaxy. Adv Mater 20:4464–4469CrossRefGoogle Scholar
  30. Tang H, Ding Y, Jiang P, Zhou H, Guo CF, Sun L, Yu A, Wang ZL (2011) High-index facets bound ripple-like ZnO nanobelts grown by chemical vapor deposition. CrystEngComm 13:5052–5054CrossRefGoogle Scholar
  31. Tripathy S, Chua SJ, Chen P, Miao ZL (2002) Micro-Raman investigation of strain in GaN and AlGaN/GaN heterostructures grown on Si (111). J Appl Phys 92:3503CrossRefGoogle Scholar
  32. Wang ZL, Kong XY, Zuo JM (2003) Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys Rev Lett 91:185502CrossRefGoogle Scholar
  33. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan Y (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  34. Xu F, Zhang P, Navrotsky A, Yuan ZY, Ren TZ, Halasa M, Su BL (2007) Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity. Chem Mater 19:5680–5686CrossRefGoogle Scholar
  35. Zhang BP, Wakasuki K, Binh NT, Segawa Y (2004) Low-temperature growth of ZnO nanostructure networks. J Appl Phys 96:340–343CrossRefGoogle Scholar
  36. Zheng WP, Shannon MM, Sheng D, Douglas HL (2005) Nanowire array gratings with ZnO combs. Nano Lett 5:723–727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Chenlong Chen
    • 1
  • Tao Yan
    • 1
  • Mitch M. C. Chou
    • 1
  • Chun-Yu Lee
    • 1
  • Bang-Min Wang
    • 1
  • Meng-Jie Wen
    • 1
  • Xingwang Zhang
    • 2
  1. 1.NSC Taiwan Consortium of Emergent Crystalline Materials, Department of Materials and Optoelectronic ScienceNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Institute of SemiconductorsChinese Academy of SciencesBeijingChina

Personalised recommendations