Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity

  • Andreia Fonseca de Faria
  • Ana Carolina Mazarin de Moraes
  • Priscyla Daniely Marcato
  • Diego Stéfani Teodoro Martinez
  • Nelson Durán
  • Antônio Gomes Souza Filho
  • Adriano Brandelli
  • Oswaldo Luiz Alves
Research Paper


This work reports on preparation, characterization, and antibacterial activity of graphene oxide (GO) decorated with biogenic silver nanoparticles (Bio-AgNPs) produced by the fungus Fusarium oxysporum. This nanocomposite (Bio-GOAg) was prepared by an ex situ process through the physical mixture of a GO dispersion with the previously prepared Bio-AgNPs. The adsorption of the Bio-AgNPs onto the GO sheets was confirmed by transmission electron microscopy. The average size of the Bio-AgNPs anchored onto the GO surface was found to be 3.5 nm. The antibacterial activity of the Bio-GOAg nanocomposite against Gram-positive and Gram-negative microorganisms was investigated and a very promising result was found for the Gram-negative strains. In addition, the Bio-GOAg nanocomposite displayed a very strong biocidal activity against the Salmonella typhimurium strain at a concentration of 2.0 μg/mL. The antibiofilm activity toward S. typhimurium adhered on stainless steel surfaces was also investigated. The results showed 100 % inhibition of the adhered cells after exposure to the Bio-GOAg nanocomposite for 1 h.


Graphene oxide Biogenic silver nanoparticles Fusarium oxysporum Antibacterial activity Salmonella typhimurium Microbiology 



A.F.F., P.D.M., D.S.T.M., A.C.M.M., N.D., and O.L.A. acknowledge the financial support of São Paulo State Research Foundation (FAPESP), National Council for Technological and Scientific Development (CNPq), National Institute of Science, Technology, and Innovation in Complex Functional Materials (INCT-Inomat), Brazilian Nanotoxicology Network (Cigenanotox), and NanoBioss-SisNano (MCTI). A.G.S.F. acknowledges the financial support of INCT NanoBioSimes (MCT-CNPq), Capes-Nanobiotec network, and Funcap through the grant Pronex (PR 2-0054-00022.01.00/11). A.B. acknowledges the financial support of CNPq and Capes. The authors acknowledge Prof.Amauri Jardim de Paula for his contributions to the transmission electron microscopy (TEM) analysis.


  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318. doi: 10.1016/S0927-7765(02)00174-1 CrossRefGoogle Scholar
  2. Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901. doi: 10.1021/es103946g CrossRefGoogle Scholar
  3. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. doi: 10.1021/cr900070d CrossRefGoogle Scholar
  4. Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162(2):295–301. doi: 10.1111/j.1574-6968.1998.tb13012.x CrossRefGoogle Scholar
  5. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470. doi: 10.1016/j.jcis.2011.05.009 CrossRefGoogle Scholar
  6. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170. doi: 10.1016/j.materresbull.2007.06.020 CrossRefGoogle Scholar
  7. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47(2):160–164. doi: 10.1016/j.colsurfb.2005.11.026 CrossRefGoogle Scholar
  8. Cai X, Lin M, Tan S, Mai W, Zhang Y, Liang Z, Lin Z, Zhang X (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50(10):3407–3415. doi: 10.1016/j.carbon.2012.02.002 CrossRefGoogle Scholar
  9. Collins T (2007) ImageJ for microscopy. Biotechniques 43(1 Suppl):25–30CrossRefGoogle Scholar
  10. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2010) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 1:16–22. doi: 10.1016/j.colsurfb.2010.10.033 Google Scholar
  11. de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124. doi: 10.1016/j.colsurfb.2013.08.006 CrossRefGoogle Scholar
  12. Durán N, Marcato P, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8. doi: 10.1186/1477-3155-3-8 CrossRefGoogle Scholar
  13. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208. doi: 10.1166/jbn.2007.022 CrossRefGoogle Scholar
  14. Durán N, Marcato PD, Conti RD, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959. doi: 10.1590/S0103-50532010000600002 CrossRefGoogle Scholar
  15. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189–190:1–20. doi: 10.1016/j.cis.2012.12.001 CrossRefGoogle Scholar
  16. Faria AF, Martinez DST, Moraes ACM, Maia da Costa MEH, Barros EB, Souza Filho AG, Paula AJ, Alves OL (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24(21):4080–4087. doi: 10.1021/cm301939s CrossRefGoogle Scholar
  17. Gadd GM, Griffiths AJ (1977–1978) Microorganisms and heavy metal toxicity. Microbial Ecol 4(4):303–317CrossRefGoogle Scholar
  18. García B, Latasa C, Solano C, Portillo FG-D, Gamazo C, Lasa I (2004) Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54(1):264–277. doi: 10.1111/j.1365-2958.2004.04269.x CrossRefGoogle Scholar
  19. Gulrajani ML, Gupta D, Periyasamy S, Muthu SG (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108(1):614–623. doi: 10.1002/app.27584 CrossRefGoogle Scholar
  20. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1(7):703–712. doi: 10.1021/sc4000362 Google Scholar
  21. Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed Nanotechnol Biol Med 8(6):935–940. doi: 10.1016/j.nano.2011.11.012 CrossRefGoogle Scholar
  22. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323. doi: 10.1021/nn101097v CrossRefGoogle Scholar
  23. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085. doi: 10.1007/s11051-008-9573-y CrossRefGoogle Scholar
  24. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101. doi: 10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  25. Kora A, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27(5):1209–1216. doi: 10.1007/s11274-010-0569-2 CrossRefGoogle Scholar
  26. Kumar AS, Abyaneh M, Gosavi SW, Kulkarni S, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. doi: 10.1007/s10529-006-9256-7 CrossRefGoogle Scholar
  27. Li J, Liu C (2010) Ag–graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem:1099–0682. doi: 10.1002/ejic.200901048
  28. Liu J, Fu S, Yuan B, Li Y, Deng Z (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132(21):7279–7281. doi: 10.1021/ja100938r CrossRefGoogle Scholar
  29. Liu L, Wang Y, Yan X, Sun DD (2011a) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418–1423. doi: 10.1039/C1NJ20076C CrossRefGoogle Scholar
  30. Liu S, Zeng TH, Hofman M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011b) Antibacterial activity of graphite, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980. doi: 10.1021/nn202451x CrossRefGoogle Scholar
  31. Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352. doi: 10.1039/C0JM02806A CrossRefGoogle Scholar
  32. Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. doi: 10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  33. Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68(5):278–283. doi: 10.1016/j.marenvres.2009.07.001 CrossRefGoogle Scholar
  34. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859–862. doi: 10.1039/B804703K CrossRefGoogle Scholar
  35. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13. doi: 10.1016/j.cis.2010.02.001 CrossRefGoogle Scholar
  36. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  37. Pasricha R, Gupta S, Srivastava A (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 20:2253–2259. doi: 10.1002/smll.20090072 CrossRefGoogle Scholar
  38. Pillai ZS, Kamat PV (2003) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108(3):945–951. doi: 10.1021/jp037018r CrossRefGoogle Scholar
  39. Prasad TVKV, Kambala V, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25(1):177–182. doi: 10.1007/s10811-012-9851-z CrossRefGoogle Scholar
  40. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem 48:7752–7777. doi: 10.1002/anie.200901678 CrossRefGoogle Scholar
  41. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941. doi: 10.1021/ja029267j CrossRefGoogle Scholar
  42. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4):869–876. doi: 10.1093/jac/dkn034 CrossRefGoogle Scholar
  43. Ruiz ON, Fernando KA, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun Y-P, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5(10):8100–8107. doi: 10.1021/nn202699t CrossRefGoogle Scholar
  44. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34. doi: 10.1021/tx200339h CrossRefGoogle Scholar
  45. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. doi: 10.1016/j.procbio.2007.02.005 CrossRefGoogle Scholar
  46. Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45(18):6039–6050. doi: 10.1016/j.watres.2011.08.065 CrossRefGoogle Scholar
  47. Simões M, Simões L, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43:573–583. doi: 10.1016/j.lwt.2009.12.008 Google Scholar
  48. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150. doi: 10.1016/j.carbon.2010.01.058 CrossRefGoogle Scholar
  49. Suber L, Sondi I, Matijević E, Goia DV (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interface Sci 288(2):489–495. doi: 10.1016/j.jcis.2005.03.017 CrossRefGoogle Scholar
  50. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262. doi: 10.1016/j.nano.2009.07.002 CrossRefGoogle Scholar
  51. Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. J Mater Chem 21(39):15593–15599. doi: 10.1039/C1JM12676H CrossRefGoogle Scholar
  52. Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Smalls 5(19):2212–2217. doi: 10.1002/smll.200900548 CrossRefGoogle Scholar
  53. Xu W-P, Zhang L-C, Li J-P, Lu Y, Li H–H, Ma Y-N, Wang W-D, Yu S-H (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593–4597. doi: 10.1039/C0JM03376F CrossRefGoogle Scholar
  54. Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW, Chen Y, Lim SY, Dai J, Chan-Park MB (2008) Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J Phys Chem C 112(48):18754–18759. doi: 10.1021/jp807133j CrossRefGoogle Scholar
  55. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846. doi: 10.1021/jp903821n CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Andreia Fonseca de Faria
    • 1
  • Ana Carolina Mazarin de Moraes
    • 1
  • Priscyla Daniely Marcato
    • 1
    • 2
  • Diego Stéfani Teodoro Martinez
    • 1
  • Nelson Durán
    • 1
    • 3
  • Antônio Gomes Souza Filho
    • 4
  • Adriano Brandelli
    • 5
  • Oswaldo Luiz Alves
    • 1
  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.School of Pharmaceutical Science of Ribeirão PretoUniversidade de São Paulo (USP)Ribeirão PretoBrazil
  3. 3.Center of Natural and Human SciencesUniversidade Federal do ABCSanto AndréBrazil
  4. 4.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  5. 5.Instituto de Ciência e Tecnologia de AlimentosUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations