Advertisement

Copolymer template control of gold nanoparticle synthesis via thermal annealing

  • A. Plaud
  • A. Sarrazin
  • J. Béal
  • J. Proust
  • P. Royer
  • J.-L. Bijeon
  • J. Plain
  • P.-M. Adam
  • T. Maurer
Brief Communication

Abstract

Here we present an original process combining top-down and bottom-up approaches by annealing a thin gold film evaporated onto a hole template made by etching a PS–PMMA copolymer film. Such process allows a better control of the gold nanoparticle size distribution which provides a sharper localized surface plasmon resonance. This makes such route appealing for sensing applications since the figure of merit of the Au nanoparticles obtained after thermal evaporation is more than doubled. Such process could besides allow tuning the localized surface plasmon resonance by using copolymers with various molecular weights and thus be attractive for surface-enhanced Raman spectroscopy.

Keywords

Localized surface plasmon resonance Optical sensor Copolymer template Reactive ion etching Gold nanoparticle Thermal annealing Composite nanostructure 

Notes

Acknowledgments

Financial support of NanoMat (www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche,” the “Conseil régional Champagne-Ardenne,” the “Fonds Européen de Développement Régional (FEDER) fund,” and the “Conseil général de l’Aube” is acknowledged. T. M thanks the DRRT (Délégation Régionale à la Recherche et à la Technologie) of Champagne-Ardenne, the EPF and the UTT via the strategic program «CODEN», and the Labex ACTION project (contract ANR-11-LABX-01-01) and the CNRS via the chaire «optical nanosensors» for financial support.

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  2. Asakawa K, Fujimoto A (2005) Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer. Appl Opt 44:7475–7482CrossRefGoogle Scholar
  3. Asakawa K, Hiraoka T (2002) Nanopatterning with microdomains of block copolymers using reactive-ion etching selectivity. Jpn J Appl Phys 41:6112–6118CrossRefGoogle Scholar
  4. Fahmi A, Pietsch T, Mendoza C, Cheval N (2009) Functional hybrid materials. Mater Today 12:44–50CrossRefGoogle Scholar
  5. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  6. Haynes C-L, Mc Farland A-D, Zhao L, Van Duyne R-P, Schatz G-C, Gunnarsson L (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342CrossRefGoogle Scholar
  7. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  8. Jia K, Bijeon JL, Adam PM, Ionescu RE (2012a) Sensitive localized surface plasmon resonance multiplexing protocols. Anal Chem 84:8020–8027CrossRefGoogle Scholar
  9. Jia K, Bijeon J-L, Adam P-M, Ionescu RE (2012b) Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 8:143–151CrossRefGoogle Scholar
  10. Kang GB, Kim S-I, Kim YT, Park JH (2009) Fabrication of metal nano dot dry etching mask using block copolymer thin film. Curr Appl Phys 9:82–84CrossRefGoogle Scholar
  11. Karlsson R, Stahlberg R (1995) Surface-plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Anal Biochem 228:274–280CrossRefGoogle Scholar
  12. Krausch G, Magerle R (2002) Nanostructured thin films via self-assembly of block copolymers. Adv Mater 14:1579–1583CrossRefGoogle Scholar
  13. Lamarre SS, Sarrazin A, Proust J, Yockell-Lelièvre H, Plain J, A.-M. Ritcey A-M et al (2013) Optical properties of Au colloids self-organized into rings via copolymer templates. Journal of Nanoparticle Research 15 Google Scholar
  14. Maurer T, Abdellaoui N, Gwiazda A, Chaumont D, Adam P-M, Vial A et al (2013a) Oxidation free silver nanoparticles for Surface Enhanced Raman Spectroscopy. NANO 8:1350016CrossRefGoogle Scholar
  15. Maurer T, Sarrazin A, Plaud A, Béal J, Nicolas R, Lamarre SS et al (2013b) Strategies for self-organization of Au nanoparticles assisted by copolymer templates. Proc. SPIE 8809, Plasmonics: Metallic Nanostructures and Their Optical Properties XI, 88092E (September 11, 2013)Google Scholar
  16. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2:136–159CrossRefGoogle Scholar
  17. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  18. Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:15–34CrossRefGoogle Scholar
  19. Tseng Y-C, Darling S-B (2010) Block copolymer nanostructures for technology. Polymers 2:470–489CrossRefGoogle Scholar
  20. Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal Chem 17:557–582CrossRefGoogle Scholar
  21. Zhu S, Chen TP, Liu YC, Yu SF, Liu Y (2010) Tunable surface plasmon resonance of gold nanoparticles self-assembled on fused silica substrate. Electrochem Solid-State Lett 13:96–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Plaud
    • 1
  • A. Sarrazin
    • 1
  • J. Béal
    • 1
  • J. Proust
    • 1
  • P. Royer
    • 1
  • J.-L. Bijeon
    • 1
  • J. Plain
    • 1
  • P.-M. Adam
    • 1
  • T. Maurer
    • 1
  1. 1.Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279Université de Technologie de TroyesTroyes CedexFrance

Personalised recommendations