Advertisement

Development of curcumin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles as anti-inflammatory carriers to human-activated endothelial cells

  • Viorel Simion
  • Daniela Stan
  • Ana-Maria Gan
  • Monica Madalina Pirvulescu
  • Elena Butoi
  • Ileana Manduteanu
  • Mariana Deleanu
  • Eugen Andrei
  • Anamaria Durdureanu-Angheluta
  • Marian Bota
  • Marius Enachescu
  • Manuela Calin
  • Maya Simionescu
Research Paper

Abstract

Curcumin (Cm)-loaded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles (CmPN) were obtained and characterized and their effect on human endothelial cells (HEC) was assessed. Different CmPN formulations have been prepared using the emulsion solvent evaporation technique, and characterized for size, structure, Zeta potential, Cm entrapment efficiency, and in vitro Cm release. CmPN cytotoxicity and cellular uptake have been followed using HEC. Also, the effect of CmPN treatment on the p38MAPK signaling pathway in endothelial cells was investigated. The results obtained by electron and atomic force microscopy revealed the spherical shape of the CmPN formulation. Based on size and encapsulation efficiency, the CmPN formulation with the average diameter of 186 nm and with the highest encapsulation efficiency (83 %) has been used in the further studies. The release of Cm from CmPN was ~18 % after 8 h of incubation at 37 °C, followed by a slow release until 144 h, when it reached 44 %, indicating a controlled release. CmPN are taken up by HEC and exhibited low cytotoxicity at concentrations up to 10 μM. The pre-treatment of HEC with CmPN before exposure to tumor necrosis factor-alpha (TNF-α) determined a decrease of p38MAPK phosphorylation. In conclusion, Cm encapsulated into PHBV nanoparticles, at concentration up to 10 μM, has low cytotoxicity and display anti-inflammatory activity on TNF-α-activated HEC by suppressing the phosphorylation of p38MAPK.

Keywords

Curcumin Endothelium Inflammation Polymeric nanoparticles Poly(hydroxybutyrate-co-hydroxyvalerate) 

Notes

Acknowledgments

This work was supported by UEFISCDI (Executive Unit for Funding Education, Research, Development and Innovation), Contract No. 4_001, Project NANODIATER under the frame of EuroNanoMed, PNII-PCCE-ID-2011-2-0028 Project; CARDIOPRO Project ID: 143, ERDF co-financed investment in RTDI for Competitiveness and PN‐II‐ID‐PCE‐2011‐3‐0928 Project, CNCS‐UEFISCDI. The financial support from European Social Fund „Cristofor I. Simionescu” Postdoctoral Fellowship Programme ID POSDRU/89/1.5/S/55216 (M. Calin) and Doctoral Fellowship Programme POSDRU/107/1.5/S/82839 (V. Simion) are gratefully acknowledged.

Supplementary material

11051_2013_2108_MOESM1_ESM.doc (160 kb)
Supplementary material 1 (DOC 160 kb)

References

  1. Aggarwal BB, Harikumar KB (2009a) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59. doi: 10.1016/j.biocel.2008.06.010 CrossRefGoogle Scholar
  2. Aggarwal BB, Harikumar KB (2009b) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell B 41(1):40–59. doi: 10.1016/j.biocel.2008.06.010 CrossRefGoogle Scholar
  3. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1A):363–398Google Scholar
  4. Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G (2007) Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol 73(7):1024–1032. doi: 10.1016/j.bcp.2006.12.010 CrossRefGoogle Scholar
  5. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16. doi: 10.1146/annurev-bioeng-071811-150124 CrossRefGoogle Scholar
  6. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. doi: 10.1021/mp700113r CrossRefGoogle Scholar
  7. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008a) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267(1):133–164. doi: 10.1016/j.canlet.2008.03.025 CrossRefGoogle Scholar
  8. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008b) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76(11):1590–1611. doi: 10.1016/j.bcp.2008.08.008 CrossRefGoogle Scholar
  9. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338. doi: 10.1016/j.bcp.2009.09.003 CrossRefGoogle Scholar
  10. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC (2011) Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res (Phila) 4(8):1158–1171. doi: 10.1158/1940-6207.CAPR-10-0006 CrossRefGoogle Scholar
  11. Binion DG, Otterson MF, Rafiee P (2008) Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57(11):1509–1517. doi: 10.1136/gut.2008.152496 CrossRefGoogle Scholar
  12. Bruzell EM, Morisbak E, Tonnesen HH (2005) Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photoch Photobio Sci 4(7):523–530. doi: 10.1039/B503397g CrossRefGoogle Scholar
  13. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900Google Scholar
  14. Cuenoud HF, Joris I, Langer RS, Majno G (1987) Focal arteriolar insudation. A response of arterioles to chronic nonspecific irritation. Am J Pathol 127(3):592–604Google Scholar
  15. Das M, Sahoo SK (2012) Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS ONE 7(3):e32920. doi: 10.1371/journal.pone.0032920 CrossRefGoogle Scholar
  16. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80(12):3734–3737CrossRefGoogle Scholar
  17. Errico C, Bartoli C, Chiellini F, Chiellini E (2009) Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J Biomed Biotechnol. doi: 10.1155/2009/571702
  18. Feng R, Song Z, Zhai G (2012) Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomed 7:4089–4098. doi: 10.2147/IJN.S33607 CrossRefGoogle Scholar
  19. Gangrade N, Price JC (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8(2):185–202. doi: 10.3109/02652049109071487 CrossRefGoogle Scholar
  20. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31(3):288–305CrossRefGoogle Scholar
  21. Gursel I, Hasirci V (1995) Properties and drug release behaviour of poly(3-hydroxybutyric acid) and various poly(3-hydroxybutyrate-hydroxyvalerate) copolymer microcapsules. J Microencapsul 12(2):185–193. doi: 10.3109/02652049509015289 CrossRefGoogle Scholar
  22. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612. doi: 10.1073/pnas.95.8.4607 CrossRefGoogle Scholar
  23. Holpuch AS, Hummel GJ, Tong M, Seghi GA, Pei P, Ma P, Mumper RJ, Mallery SR (2010) Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies. Pharm Res 27(7):1224–1236. doi: 10.1007/s11095-010-0121-y CrossRefGoogle Scholar
  24. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 561(1–3):54–62. doi: 10.1016/j.ejphar.2006.12.028 CrossRefGoogle Scholar
  25. Jin H, Heller DA, Sharma R, Strano MS (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1):149–158. doi: 10.1021/nn800532m CrossRefGoogle Scholar
  26. Joris I, Cuenoud HF, Doern GV, Underwood JM, Majno G (1990) Capillary leakage in inflammation. A study by vascular labeling. Am J Pathol 137(6):1353–1363Google Scholar
  27. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153Google Scholar
  28. Kim YS, Ahn Y, Hong MH, Joo SY, Kim KH, Sohn IS, Park HW, Hong YJ, Kim JH, Kim W, Jeong MH, Cho JG, Park JC, Kang JC (2007) Curcumin attenuates inflammatory responses of TNF-alpha-stimulated human endothelial cells. J Cardiovasc Pharmacol 50(1):41–49. doi: 10.1097/FJC.0b013e31805559b9 CrossRefGoogle Scholar
  29. Kumar A, Dhawan S, Hardegen NJ, Aggarwal BB (1998) Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation. Biochem Pharmacol 55(6):775–783CrossRefGoogle Scholar
  30. Lao CD, Ruffin M, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10. doi: 10.1186/1472-6882-6-10 CrossRefGoogle Scholar
  31. Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6):1322–1331. doi: 10.1002/cncr.21300 CrossRefGoogle Scholar
  32. Li J, Jiang Y, Wen J, Fan G, Wu Y, Zhang C (2009) A rapid and simple HPLC method for the determination of curcumin in rat plasma: assay development, validation and application to a pharmacokinetic study of curcumin liposome. Biomed Chromatogr 23(11):1201–1207. doi: 10.1002/bmc.1244 CrossRefGoogle Scholar
  33. Lin SJ, Jan KM, Chien S (1990) Role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis 10(5):703–709CrossRefGoogle Scholar
  34. Lobatto ME, Fayad ZA, Silvera S, Vucic E, Calcagno C, Mani V, Dickson SD, Nicolay K, Banciu M, Schiffelers RM, Metselaar JM, van Bloois L, Wu HS, Fallon JT, Rudd JH, Fuster V, Fisher EA, Storm G, Mulder WJ (2010) Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 7(6):2020–2029. doi: 10.1021/mp100309y CrossRefGoogle Scholar
  35. Lobatto ME, Fuster V, Fayad ZA, Mulder WJ (2011) Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 10(11):835–852. doi: 10.1038/nrd3578 CrossRefGoogle Scholar
  36. Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368(1):144–151. doi: 10.1016/j.jcis.2011.11.024 CrossRefGoogle Scholar
  37. Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L (2013) Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 8(2):e57157. doi: 10.1371/journal.pone.0057157 CrossRefGoogle Scholar
  38. Mendes JB, Riekes MK, de Oliveira VM, Michel MD, Stulzer HK, Khalil NM, Zawadzki SF, Mainardes RM, Farago PV (2012) PHBV/PCL microparticles for controlled release of resveratrol: physicochemical characterization, antioxidant potential, and effect on hemolysis of human erythrocytes. ScientificWorldJournal 2012:542937. doi: 10.1100/2012/542937 Google Scholar
  39. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125. doi: 10.1007/978-0-387-46401-5_3 CrossRefGoogle Scholar
  40. Mo L, Hou L, Guo D, Xiao X, Mao P, Yang X (2012) Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. Int J Pharm. doi: 10.1016/j.ijpharm.2012.07.050 Google Scholar
  41. Mohanty C, Sahoo SK (2010) The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31(25):6597–6611. doi: 10.1016/j.biomaterials.2010.04.062 CrossRefGoogle Scholar
  42. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefGoogle Scholar
  43. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR (2012) ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm 437(1–2):29–41. doi: 10.1016/j.ijpharm.2012.07.062 CrossRefGoogle Scholar
  44. Pignatello R, Musumeci T, Impallomeni G, Carnemolla GM, Puglisi G, Ballistreri A (2009) Poly(3-hydroxybutyrate-co-epsilon-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-epsilon-caprolactone) terpolymers as novel materials for colloidal drug delivery systems. Eur J Pharm Sci 37(3–4):451–462CrossRefGoogle Scholar
  45. Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, Tirgoviste CI, Manduteanu I (2011) Curcumin and a Morus alba extract reduce pro-inflammatory effects of resistin in human endothelial cells. Phytother Res 25(12):1737–1742. doi: 10.1002/ptr.3463 CrossRefGoogle Scholar
  46. Ramaswami G, Chai H, Yao Q, Lin PH, Lumsden AB, Chen C (2004) Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 40(6):1216–1222. doi: 10.1016/j.jvs.2004.09.021 CrossRefGoogle Scholar
  47. Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK (2012) Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol 10:38. doi: 10.1186/1477-3155-10-38 CrossRefGoogle Scholar
  48. Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 360(1):39–51. doi: 10.1016/j.jcis.2011.04.006 CrossRefGoogle Scholar
  49. Reusch RN (2000) Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry (Mosc) 65(3):280–295Google Scholar
  50. Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PT (2012) Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol 166(1):194–209. doi: 10.1111/j.1476-5381.2011.01590.x CrossRefGoogle Scholar
  51. Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99(2):271–280. doi: 10.1016/j.jconrel.2004.07.007 CrossRefGoogle Scholar
  52. Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14(10):1029–1042CrossRefGoogle Scholar
  53. Siflinger-Birnboim A, Del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB (1987) Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol 132(1):111–117. doi: 10.1002/jcp.1041320115 CrossRefGoogle Scholar
  54. Singh S, Khar A (2006) Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem 6(3):259–270CrossRefGoogle Scholar
  55. Stemerman MB (1981) Effects of moderate hypercholesterolemia on rabbit endothelium. Arteriosclerosis 1(1):25–32CrossRefGoogle Scholar
  56. Sultana N, Wang M (2012) PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication 4(1):015003. doi: 10.1088/1758-5082/4/1/015003 CrossRefGoogle Scholar
  57. Thomas CM, Lutz JF (2011) Precision synthesis of biodegradable polymers. Angew Chem Int Ed Engl 50(40):9244–9246. doi: 10.1002/anie.201103076 CrossRefGoogle Scholar
  58. Trewyn BG, Nieweg JA, Zhao Y, Lin VSY (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane, penetration. Chem Eng J 137(1):23–29. doi: 10.1016/j.cej.2007.09.045 CrossRefGoogle Scholar
  59. van Hinsbergh VW (1997) Endothelial permeability for macromolecules. Mechanistic aspects of pathophysiological modulation. Arterioscler Thromb Vasc Biol 17(6):1018–1023CrossRefGoogle Scholar
  60. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x CrossRefGoogle Scholar
  61. Vilos C, Velasquez LA (2012) Therapeutic strategies based on polymeric microparticles. J Biomed Biotechnol 2012:672760. doi: 10.1155/2012/672760 Google Scholar
  62. Wan S, Sun Y, Sun L, Tan F (2012) Chitosan microparticles for oral bioavailability improvement of the hydrophobic drug curcumin. Pharmazie 67(6):525–528Google Scholar
  63. Wang J, Dong SJ (2012) ICAM-1 and IL-8 are expressed by DEHP and suppressed by curcumin through ERK and p38MAPK in human umbilical vein endothelial cells. Inflammation 35(3):859–870. doi: 10.1007/s10753-011-9387-4 CrossRefGoogle Scholar
  64. Wiggam MI, O’Kane MJ, Harper R, Atkinson AB, Hadden DR, Trimble ER, Bell PM (1997) Treatment of diabetic ketoacidosis using normalization of blood 3-hydroxybutyrate concentration as the endpoint of emergency management. A randomized controlled study. Diabetes Care 20(9):1347–1352CrossRefGoogle Scholar
  65. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351(1):19–29. doi: 10.1016/j.jcis.2010.05.022 CrossRefGoogle Scholar
  66. Yallapu MM, Othman SF, Curtis ET, Bauer NA, Chauhan N, Kumar D, Jaggi M, Chauhan SC (2012) Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 7:1761–1779. doi: 10.2147/IJN.S29290 Google Scholar
  67. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular-permeability in a human tumor xenograft—molecular-size dependence and cutoff size. Cancer Res 55(17):3752–3756Google Scholar
  68. Zhang C, Zhao L, Dong Y, Zhang X, Lin J, Chen Z (2010) Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 76(1):10–16. doi: 10.1016/j.ejpb.2010.05.005 CrossRefGoogle Scholar
  69. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56(5):691–701. doi: 10.1002/mnfr.201100735 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Viorel Simion
    • 1
  • Daniela Stan
    • 1
  • Ana-Maria Gan
    • 1
  • Monica Madalina Pirvulescu
    • 1
  • Elena Butoi
    • 1
  • Ileana Manduteanu
    • 1
  • Mariana Deleanu
    • 1
  • Eugen Andrei
    • 1
  • Anamaria Durdureanu-Angheluta
    • 2
  • Marian Bota
    • 3
  • Marius Enachescu
    • 3
  • Manuela Calin
    • 1
    • 2
  • Maya Simionescu
    • 1
  1. 1.Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian AcademyBucharestRomania
  2. 2.Institute of Macromolecular Chemistry “Petru Poni” of the Romanian AcademyIasiRomania
  3. 3.Center for Surface Science and NanotechnologyPolitehnica UniversityBucharestRomania

Personalised recommendations