Spherically symmetric nanoparticle melting with a variable phase change temperature

Research Paper

Abstract

In this paper, we analyse the melting of a spherically symmetric nanoparticle, using a continuum model which is valid down to a few nanometres. Melting point depression is accounted for by a generalised Gibbs–Thomson relation. The system of governing equations involves heat equations in the liquid and solid, a Stefan condition to determine the position of the melt boundary and the Gibbs-Thomson equation. This system is simplified systematically to a pair of first-order ordinary differential equations. Comparison with the solution of the full system shows excellent agreement. The reduced system highlights the effects that dominate the melting process and specifically that rapid melting is expected in the final stages, as the radius tends to zero. The results agree qualitatively with limited available experimental data.

Keywords

Nanoparticle melting Mathematical model Phase change Gibbs–Thomson Numerical simulation 

References

  1. Abragall P, Nguyen NT (2009) Nanofluidics, 1st edn. Artech House,LondonGoogle Scholar
  2. Ahmad F, Pandey A, Herzog A, Rose J, Gerba C, Hashsham S (2012) Environmental applications and potential health implications of quantum dots. J Nanopart Res 14(1038):doi:10.1007/s11,051-012-1038-7
  3. Alexiades V, Solomon A (1993) Mathematical modelling of rfreezing and melting processes, 1st edn. Hemisphere Publishing Corporation, WashingtonGoogle Scholar
  4. Bergese P, Colombo I, Gervasoni D, Depero L (2004) Melting of nanostructured drugs embedded into a polymeric matrix. J Phys Chem B 108:15,488–15,493CrossRefGoogle Scholar
  5. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287–2297CrossRefGoogle Scholar
  6. David TB, Lereah Y, Deutscher G, Kofman R, Cheyssac P (1995) Solid-liquid transition in ultra-fine lead particles. Philos Mag A 71(5):1135–1143CrossRefGoogle Scholar
  7. Davis S (2001) Theory of Solidification. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Debenedetti P (1996) Metastable liquids, concepts and principles. Princeton University Press, PrincetonGoogle Scholar
  9. Evans JD, King JR (2000) Asymptotic results for the Stefan problem with kinetic undercooling. QJl Mech App Math 53:449–473CrossRefGoogle Scholar
  10. Faivre C, Bellet D, Dolino G (1999) Phase transitions of fluids confined in porous silicon: A differential calorimetry investigation. Eur Phys J B 7(1):19–36Google Scholar
  11. Ghosh P, Han G, De M, Kim C, Rotello V (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  12. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90CrossRefGoogle Scholar
  13. Guisbiers G, Kazan M, Overschelde OV, Wautelet M, Pereira S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112:4097–4103CrossRefGoogle Scholar
  14. Gulseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51(11):7377–7380CrossRefGoogle Scholar
  15. Hill JM (1987) One-Dimensional Stefan problems: an introduction, 1st edn. Longman Scientific & Technical, New YorkGoogle Scholar
  16. Hinch E (2000) Perturbation methods. Cambridge University Press, CambridgeGoogle Scholar
  17. Karmakar S, Kumar S, Rinaldi R, Maruccio G (2011) Nano-electronics and spintronics with nanoparticles. J Phys: Conf Ser 292(012002):doi:10.1088/1742-6596/292/1/012,002
  18. Kofman R, Cheyssac P, Lereah Y, Stella A (1999) Melting of clusters approaching 0D. Eur Phys J D 9(1–4):441–444CrossRefGoogle Scholar
  19. Koga K, Ikeshoj T, Sugawara KI (2004) Size- and temperature-dependent structural transitions in gold nanoparticles. Phys Rev Lett 92(11):doi:10.1103/PhysRevLett.92.115,507
  20. Kuo CL, Clancy P (2005) Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J Phys Chem B 109:13,743–13,754CrossRefGoogle Scholar
  21. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys Rev Lett 77(1):99–102CrossRefGoogle Scholar
  22. Liu X, Yangb P, Jiang Q (2007) Size effect on melting temperature of nanostructured drugs. Mat Chem Phys 103(103):1–4Google Scholar
  23. McCue SW, King JR, Riley DS (2003) Extinction behaviour for two-dimensional inward-solidification problems. Proceedings of the Royal Society A 459(2032):977–999Google Scholar
  24. McCue SW, Wu B, Hill JM (2009) Micro/nanoparticle melting with spherical symmetry and surface tension. IMA J Appl Math 74:439–457CrossRefGoogle Scholar
  25. Mitchell S, Vynnycky M (2009) Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems. Appl Math Comput 215(4):1609–1621CrossRefGoogle Scholar
  26. Myers TG, Mitchell SL, Font F (2012) Energy conservation in the one-phase supercooled Stefan problem. Int Comm Heat Mass Trans 39:1522–1525Google Scholar
  27. Nanda K (2009) Size dependent melting of nanoparticles. Pramana J Phys 72(4):617–628CrossRefGoogle Scholar
  28. Nguyen NT, Werely S (2006) Fundamentals and applications of microfluidics, 1st edn. Artech House, BostonGoogle Scholar
  29. Petrov O, Furó I (2006) Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys Rev E 73:011,608CrossRefGoogle Scholar
  30. Plech A, Kotaidis V, Grésillon S, Dahmen C, von Plessen G (2004) Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys Rev B 70(19):195,423CrossRefGoogle Scholar
  31. Rana S, Bajaj A, Mout R, Rotello V (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216CrossRefGoogle Scholar
  32. Riley DS, Smith FT, Poots G (1974) The inward solidification of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516CrossRefGoogle Scholar
  33. Ruan C, Murooka Y, Raman RK, Murdick RA (2007) Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7(5):1290–1296CrossRefGoogle Scholar
  34. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech 2(3)Google Scholar
  35. Samsonov V, Bazulev A, Sdobnyakovy N (2003) On applicability of Gibbs thermodynamics to nanoparticles. Central Eur J Phys 1(3):474–484CrossRefGoogle Scholar
  36. Sheng HW (1996) Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Phil Mag Lett 73(4):179–186CrossRefGoogle Scholar
  37. Sheng HW, Ren G, Peng LM, Hu ZQ, Lu K (1996) Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philos Mag Lett 73(4):179–186CrossRefGoogle Scholar
  38. Shim JH, Lee BJ, Cho YW (2002) Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf Sci 512:262–268CrossRefGoogle Scholar
  39. Travis KP, Todd BD, Evans DJ (1997) Departure from navier-stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288–4295CrossRefGoogle Scholar
  40. Volz S, Saulnier JB, Lallemand M, Perrin B, Depondt P (1996) Transient fourier-law deviation by molecular dynamics in solid argon. Phys Rev B 54(1):340–347CrossRefGoogle Scholar
  41. Wu B, McCue SW, Tillman P, Hill JM (2009) Single phase limit for melting nanoparticles. Appl Math Model 33(5):2349–2367CrossRefGoogle Scholar
  42. Wu B, Tillman P, McCue SW, Hill JM (2009) Nanoparticle melting as a Stefan moving boundary problem. J Nanosci Nanotechnol 9(2):885–888CrossRefGoogle Scholar
  43. Wu T, Liaw HC, Chen YZ (2002) Thermal effect of surface tension on the inward solidication of spheres. International J Heat Mass Trans 45(10):2055–2065CrossRefGoogle Scholar
  44. Zhong J, Zhang LH, Jin ZH, Sui ML, Lu K (2001) Superheating of Ag nanoparticles embedded in Ni matrix. Acta Mater 49(15):2897–2904CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre de Recerca Matemàtica, Campus de BellaterraBellaterraSpain
  2. 2.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations