Advertisement

Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

  • Yiyao Tian
  • Yijie Zhang
  • Yizhao Lin
  • Kuo Gao
  • Yunpeng Zhang
  • Kaiyi Liu
  • Qianqian Yang
  • Xiao Zhou
  • Donghuan QinEmail author
  • Hongbin Wu
  • Yuxin Xia
  • Lintao Hou
  • Linfeng Lan
  • Junwu Chen
  • Dan Wang
  • Rihui Yao
Research Paper

Abstract

CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO x /Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl2 annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl2 annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl2-annealing conditions (370 °C CdCl2 annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl2-annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V OC of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage.

Keywords

Nanocrystals solar cells CdTe nanocrystals Solution processed Inverted structure Energy conversion 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51073056, 50990065, 51010003, 61274062, and 11204106), National Science Foundation for Distinguished Young Scholars of China (Grant No. 51225301) and SCUT Grant (No. 2013ZZ0016).

References

  1. Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8 % efficiency. Appl Phys Lett 62:2851–2852CrossRefGoogle Scholar
  2. Chu TL, Chu SS, Ferekides C, Wu CQ, Britt J, Wang C (1991) 13.4% efficient thin-film CdS/CdTe solar cells. J Appl Phys 70:7608–7612CrossRefGoogle Scholar
  3. Green MA, Emery K, Hishikawa Y, Warta W (2009) Solar cell efficiency tables (version 33). Prog Photovolt 17:74–85Google Scholar
  4. Guo Q, Qi GM, Grayson F, Yang WC, Walker BC, Stach E, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386CrossRefGoogle Scholar
  5. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465CrossRefGoogle Scholar
  6. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595Google Scholar
  7. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp K, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRefGoogle Scholar
  8. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20 %. Prog Photovolt Res Appl 19:894–897CrossRefGoogle Scholar
  9. Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864CrossRefGoogle Scholar
  10. Katiyar RK, Sahoo S, Gaur APS, Singh A, Morell G, Katiyar RS (2011) Studies of photovoltaic properties of nanocrystalline thin films of CdS–CdTe. J Alloy Compd 509:10003–10006CrossRefGoogle Scholar
  11. King RR (2008) Multijunction cells: record breakers. Nat Photonics 2:284–286CrossRefGoogle Scholar
  12. Lan L, Xu M, Peng J, Xu H, Li M, Luo D, Zou J, Tao H, Wang L, Yao R (2011) Influence of source and drain contacts on the properties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. J Appl Phys 110:103703CrossRefGoogle Scholar
  13. Lin H, Xia W, Wu HN, Tang CW (2010) CdS/CdTe solar cells with MoOx as back contact buffers. Appl Phys Lett 97:123504CrossRefGoogle Scholar
  14. Liu H, Tang J, Kramer I, Debnath JR, Koleilat GI, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent EH (2011) Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv Mater 23:3832–3837Google Scholar
  15. MacDonald BI, Martucci A, Rubanov S, Watkins SE, Mulvaney P, Jasieniak JJ (2012) Layer-by-layer assembly of sintered CdSexTe1−x nanocrystal solar cells. ACS Nano 6:5995–6004CrossRefGoogle Scholar
  16. Moutinho HR, Al-Jassim MM, Levi DH, Dippo PC, Kazmerski LL (1998) Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J Vac Sci Technol 16:1251–1257CrossRefGoogle Scholar
  17. Nie W, He J, Zhao N, Ji X (2006) A controllable synthesis of multi-armed CdTe nanorods. Nanotechnology 17:1146CrossRefGoogle Scholar
  18. Olson JD, Rodriguez YW, Yang LD, Alers GB, Carter SA (2010) CdTe Schottky diodes from colloidal nanocrystals. Appl Phys Lett 96:242103CrossRefGoogle Scholar
  19. Paulson PD, Dutta V (2000) Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells. Thin Solid Films 370:299–306CrossRefGoogle Scholar
  20. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184CrossRefGoogle Scholar
  21. Sun S, Liu H, Gao Y, Qin D, Chen J (2012) Controlled synthesis of CdTe nanocrystals for high performance Schottky thin film solar cells. J Mater Chem 22:19207–19212CrossRefGoogle Scholar
  22. Tang J, Lemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath Cha RD, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771CrossRefGoogle Scholar
  23. Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent EH (2012) Quantum junction solar cells. Nano Lett 12:4889–4894CrossRefGoogle Scholar
  24. Weil BD, Connor ST, Cui Y (2010) CuInS2 solar cells by air-stable ink rolling. J Am Chem Soc 132:6642–6643CrossRefGoogle Scholar
  25. Yu WW, Wang YA, Peng X (2003) Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:  ligand effects on monomers and nanocrystals. Chem Mater 15:4300–4308CrossRefGoogle Scholar
  26. Zweibel K (1999) Issues in thin film PV manufacturing cost reduction. Sol Energy Mater Sol Cells 59:1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yiyao Tian
    • 1
  • Yijie Zhang
    • 1
  • Yizhao Lin
    • 1
  • Kuo Gao
    • 1
  • Yunpeng Zhang
    • 1
  • Kaiyi Liu
    • 1
  • Qianqian Yang
    • 1
  • Xiao Zhou
    • 2
  • Donghuan Qin
    • 2
    Email author
  • Hongbin Wu
    • 2
  • Yuxin Xia
    • 3
  • Lintao Hou
    • 3
  • Linfeng Lan
    • 2
  • Junwu Chen
    • 2
  • Dan Wang
    • 2
  • Rihui Yao
    • 2
  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & DevicesSouth China University of TechnologyGuangzhouChina
  3. 3.College of Science and EngineeringJinan UniversityGuangzhouChina

Personalised recommendations