Advertisement

Multicolor photochromism of silver-containing mesoporous films of amorphous or anatase TiO2

  • L. Nadar
  • N. DestouchesEmail author
  • N. Crespo-Monteiro
  • R. Sayah
  • F. Vocanson
  • S. Reynaud
  • Y. Lefkir
  • B. Capoen
Research Paper

Abstract

Mesoporous TiO2 films loaded with silver nanoparticles grown photocatalytically, which are initially brown, change their color under visible laser irradiations. In this article, we compare the multicolor photochromisms of amorphous and anatase phases of TiO2. The mesoporous films are impregnated with silver salt and then exposed to a low-intensity UV laser light to grow silver nanoparticles. The Ag–TiO2 films are then exposed to visible laser beams, and the influences of several exposure parameters on the photochromic behavior are examined. Most of the previous studies have reported a poor stability of the photoinduced colors under day light or even in the dark, and few of them demonstrated the ability to get various colors on the same sample. These inconveniences limit the application field of such materials. On the other hand, except in our previous studies, only crystalline TiO2 is generally used, in its anatase or rutile phase. In this article we show that mesoporous films of amorphous and anatase phases of TiO2 respond in an efficient manner to light excitation and that multiple colors can be obtained on both kinds of films. For the first time on such Ag–TiO2 films we show that the various photoinduced colors are stable over considerable months. Visible intensity is shown to have a significant influence on the film behavior, which was not identified in previous studies. The laser-induced spectral changes are also shown to depend on the incident laser polarization. The photochromic behaviors are characterized in terms of color changes and spectral variations. The reproducibility of the photochromic process along reduction/oxidation cycles is demonstrated, and the stability of different laser-induced colors is reported on 6-month-old samples.

Keywords

Silver nanoparticles Titanium dioxide Thin films Photochromism Anatase 

Notes

Acknowledgments

The authors thank R. Vera from the University of Lyon for gathering the XRD data. The current study is supported by ANR within the framework of project UPCOLOR n JCJC 2010 1002 1.

References

  1. Alberius P, Frindell K, Hayward R, Kramer E, Stucky G, Chmelka B (2002) General predictive synthesis of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater 14:3284–3294. doi: 10.1021/cm011209u CrossRefGoogle Scholar
  2. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2010) Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir 26:1199–1206. doi: 10.1021/la902339j CrossRefGoogle Scholar
  3. Crespo-Monteiro N, Destouches N, Bois L, Chassagneux F, Reynaud S, Fournel T (2010) Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater 22:3166–3170. doi: 10.1002/adma.201000340 CrossRefGoogle Scholar
  4. Crespo-Monteiro N, Destouches N, Nadar L, Reynaud S, Vocanson F, Michalon JY (2011) Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles. Appl Phys Lett 99:173106. doi: 10.1063/1.3653282 CrossRefGoogle Scholar
  5. Crespo-Monteiro N, Destouches N, Saviot L, Reynaud S, Epicier T, Gamet E, Bois L, Boukenter A (2012a) One-step microstructuring of TiO2 and Ag–TiO2 films by continuous wave laser processing in the UV and visible ranges. J Phys Chem C 116:26857–26864. doi: 10.1021/jp3096264 CrossRefGoogle Scholar
  6. Crespo-Monteiro N, Destouches N, Fournel T (2012b) Updatable random texturing of Ag/TiO2 films for goods authentication. Appl Phys Express 5:075803. doi: 10.1143/APEX.5.075803 CrossRefGoogle Scholar
  7. Dahmen C, Sprafke AN, Dieker H, Wuttig M, von Plessen G (2006) Optical and structural changes of silver nanoparticles during photochromic transformation. Appl Phys Lett 88:011923. doi: 10.1063/1.2163268 CrossRefGoogle Scholar
  8. Destouches N, Battie Y, Crespo-Monteiro N, Chassagneux F, Bois L, Bakhti S, Vocanson F, Toulhoat N, Moncoffre N, Epicier T (2013) Photo-directed organization of silver nanoparticles in mesostructured silica and titania films. J Nanopart Res 15:1422. doi: 10.1007/s11051-013-1422-y CrossRefGoogle Scholar
  9. Hoheisel W, Jungmann K, Vollmer M, Weidenauer R, Träger F (1988) Desorption stimulated by laser-induced surface-plasmon excitation. Phys Rev Lett 60:1649–1652. doi: 10.1103/PhysRevLett.60.1649 CrossRefGoogle Scholar
  10. Kawahara K, Suzuki K, Ohko Y, Tatsuma T (2005) Electron transport in silver-semiconductor nano composite films exhibiting multicolor photochromism. Phys Chem Chem Phys 7:3851–3855. doi: 10.1039/B511489F CrossRefGoogle Scholar
  11. Matsubara K, Tatsuma T (2007) Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 Surfaces. Adv Mater 19:2802–2806. doi: 10.1002/adma.200602823 CrossRefGoogle Scholar
  12. Matsubara K, Kelly KL, Sakai N, Tatsuma T (2008) Effects of adsorbed water on plasmon-based dissolution, redeposition and resulting spectral changes of Ag nanoparticles on single-crystalline TiO2. Phys Chem Chem Phys 10:2263–2269. doi: 10.1039/B719971F CrossRefGoogle Scholar
  13. Matsubara K, Kelly KL, Sakai N, Tatsuma T (2009) Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J Mater Chem 19:5526–5532. doi: 10.1039/B906795G CrossRefGoogle Scholar
  14. Nadar L, Sayah R, Vocanson F, Crespo-Monteiro N, Boukenter A, Sao Joao S, Destouches N (2011) Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt. Photochem Photobiol Sci 10:1810–1816. doi: 10.1039/C1PP05172E CrossRefGoogle Scholar
  15. Naoi K, Ohko Y, Tatsuma T (2004) TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J Am Chem Soc 126:3664–3668. doi: 10.1021/ja039474z CrossRefGoogle Scholar
  16. Naoi K, Ohko Y, Tatsuma T (2005) Switchable rewritability of Ag–TiO2 nanocomposite films with multicolor photochromism. Chem Commun 10:1288–1290. doi: 10.1039/B416139D CrossRefGoogle Scholar
  17. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2:29–31. doi: 10.1038/nmat796 CrossRefGoogle Scholar
  18. Okumu J, Dahmen C, Sprafke AN, Luysberg M, Von Plessen G, Wuttig M (2005) Photochromic silver nanoparticles fabricated by sputter deposition. J Appl Phys 97:094305. doi: 10.1063/1.1888044 CrossRefGoogle Scholar
  19. Palik ED (1985) Handbook of optical constants of solids. Academic Press, San DiegoGoogle Scholar
  20. Preclíková J, Trojánek F, Němec P, Malý P (2008) Multicolour photochromic behavior of silver nanoparticles in titanium dioxide matrix. Phys Status Solidi (C) 5:3496–3498. doi: 10.1002/pssc.200779408 CrossRefGoogle Scholar
  21. Pustovalov VK (2005) Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–108. doi: 10.1016/j.chemphys.2004.08.005 CrossRefGoogle Scholar
  22. Sun Q, Xu Y (2010) Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J Phys Chem C 114:18911–18918. doi: 10.1021/jp104762h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Nadar
    • 1
    • 2
    • 3
  • N. Destouches
    • 1
    • 2
    • 3
    Email author
  • N. Crespo-Monteiro
    • 1
    • 2
    • 3
  • R. Sayah
    • 1
    • 2
    • 3
  • F. Vocanson
    • 1
    • 2
    • 3
  • S. Reynaud
    • 1
    • 2
    • 3
  • Y. Lefkir
    • 1
    • 2
    • 3
  • B. Capoen
    • 4
  1. 1.Université de LyonSaint-ÉtienneFrance
  2. 2.CNRS, UMR 5516, Laboratoire Hubert CurienSaint-ÉtienneFrance
  3. 3.Université de Saint-Etienne Jean-MonnetSaint-ÉtienneFrance
  4. 4.PhLAM (CNRS, UMR 8523) and CERLAUniversité Lille 1, Sciences et TechnologiesVilleneuve d’AscqFrance

Personalised recommendations