Effect of the manufacturing parameters on the structure of nitrogen-doped carbon nanotubes produced by catalytic laser-induced chemical vapor deposition

  • Iuliana P. MorjanEmail author
  • Rodica Alexandrescu
  • Ion Morjan
  • Catalin Luculescu
  • Eugeniu Vasile
  • Petre Osiceanu
  • Monica Scarisoreanu
  • Gabriela Demian
Research Paper


Nitrogen-containing carbon nanotubes (CNx-NTs), with a relatively high level of nitrogen doping were prepared by the catalytic laser-induced CVD method. The nanotubes were catalytically grown directly on a silicon substrate from C2H2/NH3 gaseous precursors. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) give firm evidence for the nitrogen doping. As determined by XPS, the N concentration for the prepared CNx-NTs increases from 3.6 to 30.6 at.% with increasing ammonia concentration and pressure. TEM images indicate that the nanotubes are bamboo like. As the nitrogen content increases, there is a transition from the bamboo shape with few defects and little distortion to a corrugated structure with a much larger number of defects. Raman spectroscopy revealed that with increasing nitrogen concentration, there is more disorder and defects, together with an increase in I D/I G ratio. By energy-filtering TEM, a higher N concentration was found on the outer amorphous nanolayer than in the compartment core of the nanotubes.


Nitrogen-doped carbon nanotubes Catalyst nanoparticles Laser-induced chemical vapor deposition Bamboo-like structure 



The first author (I. P. M.) gratefully acknowledges financial support in the frame of the Project POSDRU/89/1.5/S/63700.


  1. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Verissimo C (2006) Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44:2202–2211. doi: 10.1016/j.carbon.2006.03.003 CrossRefGoogle Scholar
  2. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45:913–921. doi: 10.1016/j.carbon.2007.01.003 CrossRefGoogle Scholar
  3. Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3:2884–2946. doi: 10.3390/ma3042884 CrossRefGoogle Scholar
  4. Bondi SN, Lackey WJ, Johnson RW, Wang X, Wang ZL (2006) Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon 44:1393–1403. doi: 10.1016/j.carbon.2005.11.023 CrossRefGoogle Scholar
  5. Choi H, Park J, Kim B (2005) Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. J Phys Chem B 109:4333–4340. doi: 10.1021/jp0453109 CrossRefGoogle Scholar
  6. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814. doi: 10.1080/000187300413184 CrossRefGoogle Scholar
  7. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99. doi: 10.1016/j.physrep.2004.10.006 CrossRefGoogle Scholar
  8. Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I et al (2004) Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diam Relat Mater 13:362–370. doi: 10.1016/j.diamond.2003.10.022 CrossRefGoogle Scholar
  9. Endo M, Hayashi T, Hong SH, Enoki T, Dresselhaus MS (2001) Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys 90:5670–5674. doi: 10.1063/1.1409581 CrossRefGoogle Scholar
  10. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nanoadiabatic effects. Solid State Commun 143:47–57. doi: 10.1016/j.ssc.2007.03.052 CrossRefGoogle Scholar
  11. Glenis S, Nelson AJ, Labes MM (1999) Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. J Appl Phys 86:4464–4466. doi: 10.1063/1.371387 CrossRefGoogle Scholar
  12. Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A et al (2004) Synthesis of N-doped SWNT using the arc-discharge procedure. Chem Phys Lett 387:193–197. doi: 10.1016/j.cplett.2004.02.005 CrossRefGoogle Scholar
  13. He M, Zhou S, Zhang J, Liu Z, Robinson C (2005) CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J Phys Chem B 109:9275–9279. doi: 10.1021/jp044868d CrossRefGoogle Scholar
  14. Herlin N, Bohn I, Reynaud C, Cauchetier M, Galvez A, Rouzaud J-N (1998) Nanoparticles produced by Laser Pyrolysis of hydrocarbons: analogy with carbon cosmic dust. Astron Astrophys 330:1127–1135Google Scholar
  15. Hernandez E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A Mater Sci Process 68:287–292. doi: 10.1007/s003390050890 CrossRefGoogle Scholar
  16. Ibrahim EMM, Khavrus VO, Leonhardt A, Hampel S, Oswald S, Rummeli MH et al (2010) Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. Diamond Relat Mater 19:1199–1206. doi: 10.1016/j.diamond.2010.05.008 CrossRefGoogle Scholar
  17. Jang TK, Ahn JH, Lee YH, Ju BK (2003) Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition Chem. Phys Lett 372:745–749. doi: 10.1016/S0009-2614(03)00501-3 Google Scholar
  18. Jang JW, Leea CE, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84:2877–2879. doi: 10.1063/1.1697624 CrossRefGoogle Scholar
  19. Kaun C, Larade B, Mehrez H, Taylor J, Guo H (2002) Current-voltage characteristics of carbon nanotubes with substitutional nitrogen. Phys Rev B 65:205416–205421. doi: 10.1103/PhysRevB.65.205416 CrossRefGoogle Scholar
  20. Kiang C-H, Endo M, Ajayan PM, Dresselhaus G, Dresselhaus MS (1998) Size effects in carbon nanotubes. Phys Rev Lett 81:1869–1872. doi: 10.1103/PhysRevLett.81.1869 CrossRefGoogle Scholar
  21. Kinoshita K (1988) Carbon–electrochemical and physicochemical properties. John Wiley, New York, pp 1–85Google Scholar
  22. Koo′s AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37. doi: 10.1016/j.carbon.2008.08.014 Google Scholar
  23. Liu H, Arenal R, Enouz-Vedrenne S, Stephan O, Loiseau A (2009) Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique. J Phys Chem C 113:9509–9511. doi: 10.1021/jp902478j CrossRefGoogle Scholar
  24. Liu H, Zhang Y, Li R, Sun X, Desilets S, Abou-Rachid H et al (2010) Structural and morphological control of aligned nitrogen doped carbon nanotubes. Carbon 48:1498–1507. doi: 10.1016/j.carbon.2009.12.045 CrossRefGoogle Scholar
  25. Liu J, Zhang Y, Ionescu MI, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis. Appl Surfe Sci 257:7837–7844. doi: 10.1016/j.apsusc.2011.04.041 CrossRefGoogle Scholar
  26. Mahjouri-Samani M, Zhou YS, Xiong W, Gao Y, Mitchell M, Jiang L et al (2010) Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology 21:395601–395607. doi: 10.1088/0957-4484/21/39/395601 CrossRefGoogle Scholar
  27. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437. doi: 10.1016/j.carbon.2005.11.027 CrossRefGoogle Scholar
  28. McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H et al (2012) Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50:1216–1226. doi: 10.1016/j.carbon.2011.10.036 CrossRefGoogle Scholar
  29. Morjan I, Soare I, Alexandrescu R, Morjan RE, Gavrila-Florescu L, Prodan G et al (2007) Carbon nanotubes growth from C2H2 and C2H4/NH3 by catalytic LCVD on supported iron-carbon nanocomposites. Physica E 37:26–33. doi: 10.1016/j.physe.2006.10.009 CrossRefGoogle Scholar
  30. Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan RE, Prodan G et al (2008) Carbon nanotubes grown by catalytic CO2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparticles. Infr Phys Tech 51:186–197. doi: 10.1016/j.infrared.2007.07.001 CrossRefGoogle Scholar
  31. Nemes-incze P, Daroczi N, Sarkozi Z, Koos AA, Kertesz K, Tiprigan O et al (2007) Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine. J Optoelectron Adv Mater 9:1525–1529Google Scholar
  32. Nevidomskyy A, Csanyi G, Payne M (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91:105502–105506. doi: 10.1103/PhysRevLett.91.105502 CrossRefGoogle Scholar
  33. Ratkovic S, Kiss E, Boskovic G (2009) Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts. Chem Ind Chem Eng Q 15:263–270. doi: 10.2298/CICEQ0904263R CrossRefGoogle Scholar
  34. Reyes-Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg D, Ruhle M et al (2004) Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chem Phys Lett 396:167–173. doi: 10.1016/j.cplett.2004.07.125 CrossRefGoogle Scholar
  35. Rohmund F, Morjan R, Ledoux G, Huisken F, Alexandrescu R (2002) Carbon nanotube films grown by laser-assisted chemical vapor deposition. J Vac Sci Technol B: Microelectron Nanometer Struct 20:802–811. doi: 10.1116/1.1469013 CrossRefGoogle Scholar
  36. Shi J, Lu YF, Yi KJ, Lin YS, Liou SH, Hou JB et al (2006) Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Appl Phys Lett 89:083105–083108. doi: 10.1063/1.2338005 CrossRefGoogle Scholar
  37. Sjostrom H, Stafstrom S, Boman M, Sundgren JE (1995) Superhard and elastic carbon nitride thin films having fullerene like microstructure. Phys Rev Lett 75:1336–1339. doi: 10.1103/PhysRevLett.75.1336 CrossRefGoogle Scholar
  38. Srivastava SK, Vankar VD, Sridhar Rao DV, Kumar V (2006) Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515:1851–1856. doi: 10.1016/j.tsf.2006.07.016 CrossRefGoogle Scholar
  39. Xifei L, Jian L, Yong Z, Yongliang L, Hao L, et al (2012), High concentration nitrogen doped carbon nanotube anodes with superior Li + storage performance for lithium rechargeable battery application, 197:238–245 doi:  10.1016/j.carbon.2009.12.045
  40. Zhou YS, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L et al (2010) Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology 21:315601–315608. doi: 10.1088/0957-4484/21/31/315601 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iuliana P. Morjan
    • 1
    Email author
  • Rodica Alexandrescu
    • 1
  • Ion Morjan
    • 1
  • Catalin Luculescu
    • 1
  • Eugeniu Vasile
    • 2
  • Petre Osiceanu
    • 3
  • Monica Scarisoreanu
    • 1
  • Gabriela Demian
    • 4
  1. 1.National Institute for LasersPlasma and Radiation PhysicsBucharestRomania
  2. 2.METAV-R&DBucharestRomania
  3. 3.“Ilie Murgulescu” Institute of Physical Chemistry, Romanian AcademyBucharestRomania
  4. 4.Faculty of MechanicsUniversity of CraiovaCraiovaRomania

Personalised recommendations