Tailoring the magnetic properties of ordered 50-nm-diameter CoNi nanowire arrays

  • A. Pereira
  • C. Gallardo
  • A. P. Espejo
  • J. Briones
  • L. G. Vivas
  • M. Vázquez
  • J. C. Denardin
  • J. Escrig
Research Paper


Co x Ni1−x alloy nanowires with varying Co content (0 ≤ x ≤ 1), having a diameter of 50 nm and a length of 3 μm, have been fabricated by electrodeposition using an anodized aluminum oxide template. The composition and crystalline structure of the CoNi nanowires were determined by high-resolution scanning electron microscopy and energy-dispersive spectroscopy techniques. The room temperature magnetic behavior of the CoNi nanowire arrays is also studied and correlated with their structural and morphological properties. Analytical calculations of the angular dependence of the coercivity allow us to confirm that the magnetization reversal is mostly ascribed to the propagation of a transverse domain wall. Furthermore, our results indicate that the values of the effective anisotropy not only depend on the diameter of the nanowires, but also on the composition of the alloy. Finally, accurate control of the crystalline anisotropy plays a key role in the design of nanostructures with a required magnetic behavior, suitable for applications.


CoNi nanowire arrays Magnetic anisotropy Angular dependence Transverse reversal mode Nanostructure 



A.P. is grateful to the Institute of Materials Science of Madrid-CSIC for its hospitality. We thank Paul E. D. Soto Rodriguez for SEM images and useful discussions. In Chile, we acknowledge support from FONDECYT under projects 1110784, 1110252 and 3120059; Grant ICM P10-061-F by Fondo de Innovación para la Competitividad-MINECON, AFOSR FA9550-11-1-0347; and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia under project FB0807. MECESUP2 USA0707 and CONICYT PhD Program Fellowships are also acknowledged.


  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  2. Cho J, Hyun J, Wu JH, Min SP, Ko JY, Soh QX, Kim YK (2006) Control of magnetic anisotropy of Co nanowires. J Magn Magn Mater 303:e281–e285CrossRefGoogle Scholar
  3. Chung SW, Yu JY, Heath JR (2000) Silicon nanowire devices. Appl Phys Lett 76:2068CrossRefGoogle Scholar
  4. Dai H, Wong EW, Lu YZ, Fan S, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375:769–772CrossRefGoogle Scholar
  5. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69CrossRefGoogle Scholar
  6. Dvoret MH, Esteve D, Urbina C (1992) Single-electron transfer in metallic nanostructures. Nature 360:547–553CrossRefGoogle Scholar
  7. Elhoussine F, Matefi-Tempfli S, Encinas A, Piraux L (2002) Conductance quantization in magnetic nanowires electrodeposited in nanopores. Appl Phys Lett 81:1681CrossRefGoogle Scholar
  8. Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K (2008a) Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. Phys Rev B 77:214421CrossRefGoogle Scholar
  9. Escrig J, Lavin R, Palma JL, Denardin JC, Altbir D, Cortes A, Gomez H (2008b) Geometry dependence of coercivity in Ni nanowire arrays. Nanotechnology 19:075713CrossRefGoogle Scholar
  10. Ferain E, Legras R (2009) Templates for engineered nano-objects for use in microwave, electronic devices and biomedical sensing application. Nucl Instrum Methods Phys Res B 267:1028–1031CrossRefGoogle Scholar
  11. Franchin M, Knittel A, Albert M, Chernyshenko DS, Fischbacher T, Prabhakar A, Fangohr H (2011) Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires. Phys Rev B 84:094409CrossRefGoogle Scholar
  12. Gao N, Wang HJ, Yang EH (2010) An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation. Nanotechnology 21:105107CrossRefGoogle Scholar
  13. Huang HM, Mao M, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899CrossRefGoogle Scholar
  14. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  15. Ivanov YP, Vivas LG, Asenjo A, Chuvilin A, Chubykalo-Fesenko O, Vazquez M (2013) Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowires. EPL 102:17009CrossRefGoogle Scholar
  16. Kou X, Fan X, Dumas RK, Lu Q, Zhang Y, Zhu H, Zhang X, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393–1397CrossRefGoogle Scholar
  17. Koyama T, Chiba D, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2011) Magnetic field insensibility of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire. Appl Phys Lett 98:192509CrossRefGoogle Scholar
  18. Kumar P (2010) Magnetic behavior of surface nanostructured 50-nm Nickel thin films. Nanoscale Res Lett 5:1596–1602CrossRefGoogle Scholar
  19. Kumar P, Sangeeth K (2011) Chromium nanowires grown inside lithographically fabricated U-trench templates. Nanosci Nanotechnol Lett 3:643–647CrossRefGoogle Scholar
  20. Kumar P, Krishna MG, Bhatnagar AK, Bhattacharya AK (2008a) Template-assisted fabrication of nanowires. Int J Nanomanuf 2:477–495CrossRefGoogle Scholar
  21. Kumar P, Krishna MG, Bhattacharya AK (2008b) Electric field induced nanostructuring of metallic thin films. Int J Nanosci 7:255CrossRefGoogle Scholar
  22. Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501CrossRefGoogle Scholar
  23. Liu QF, Gao CX, Xiao JJ, Xue DS (2003) Size effects on magnetic properties in Fe0.68Ni0.32 alloy nanowire arrays. J Magn Magn Mater 260:151–155CrossRefGoogle Scholar
  24. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  25. Martin BR, Dermody DJ, Reiss BD, Fang M, Lyon LA, Natan MJ, Mallouk TE (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11:1021–1025CrossRefGoogle Scholar
  26. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRefGoogle Scholar
  27. Neumaier D, Vogl D, Eroms J, Weiss D (2008) Quantum transport in ferromagnetic permalloy nanostructures. Phys Rev B 78:174424CrossRefGoogle Scholar
  28. Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gosele U, Fischer SF, Kronmuller H (2001) Hexagonally ordered 100 nm period nickel nanowire arrays. Appl Phys Lett 79:1360CrossRefGoogle Scholar
  29. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U (2002) Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett 2:677–680CrossRefGoogle Scholar
  30. Ounadjela K, Ferre R, Louail L, George JM, Maurice JL, Piraux L, Dubois S (1997) Magnetization reversal in cobalt and nickel electrodeposited nanowires. J Appl Phys 81:5455CrossRefGoogle Scholar
  31. Prida VM, Garcia J, Iglesias L, Vega V, Gorlitz D, Nielsch K, Barriga-Castro ED, Mendoza-Resendez R, Ponce A, Luna C (2013) Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina tem-plates. Nanoscale Res Lett 8:263CrossRefGoogle Scholar
  32. Rheem Y, Yoo BY, Beyermann WP, Myung NV (2007) Electro- and magneto-transport properties of a single CoNi nanowire. Nanotechnology 18:125204CrossRefGoogle Scholar
  33. Rosa WO, Vivas LG, Pirota KR, Asenjo A, Vazquez M (2012) Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays. J Magn Magn Mater 324:3679–3682CrossRefGoogle Scholar
  34. Sun L, Searson PC, Chien CL (1999) Electrochemical deposition of nickel nanowire arrays in single-crystal mica films. Appl Phys Lett 74:2803CrossRefGoogle Scholar
  35. Talapatra S, Tang X, Padi M, Kim T, Vajtai R, Sastry GVS, Shma M, Deevi SC, Ajayan PM (2009) Synthesis and characterization of cobalt-nickel alloy nanowires. J Mater Sci 44:2271–2275CrossRefGoogle Scholar
  36. Thongmee S, Pang HL, Yi JB, Ding J, Lin JY, Van LH (2009) Unique nanostructures in NiCo alloy nanowires. Acta Mater 57:2482–2487CrossRefGoogle Scholar
  37. Vazquez M, Vivas LG (2011) Magnetization reversal in Co-base nanowire arrays. Phys Status Solidi B 248:2368–2381CrossRefGoogle Scholar
  38. Vega V, Bohnert T, Martens S, Waleczek M, Montero-Moreno JM, Gorlitz D, Prida VM, Nielsch K (2012) Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 23:465709CrossRefGoogle Scholar
  39. Vivas LG, Yanes R, Chubykalo-Fesenko O, Vazquez M (2011) Coercivity of ordered arrays of magnetic Co nanowires with controlled variable lengths. Appl Phys Lett 98:232507CrossRefGoogle Scholar
  40. Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vazquez M (2012a) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405CrossRefGoogle Scholar
  41. Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012b) Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys Rev B 85:035439CrossRefGoogle Scholar
  42. Wernsdorfer W, Doudin B, Mailly D, Hasselbac K, Benoit A, Meier J, Ansermet JP, Barbara B (1996) Nucleation of magnetization reversal in individual nanosized nickel wires. Phys Rev Lett 77:1873–1876CrossRefGoogle Scholar
  43. Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319CrossRefGoogle Scholar
  44. Xu J, Xu Y (2007) Fabrication and magnetic property of binary Co-Ni nanowire array by alternating current electrodeposition. Appl Surf Sci 253:7203–7206CrossRefGoogle Scholar
  45. Xu X, Zangari G (2005) Microscopic structure and magnetic behavior of arrays of electrodeposited Ni and Fe nanowires. J Appl Phys 97:10A306Google Scholar
  46. Zhang XY, Xu LH, Dai JY, Chan HLW (2004) Fabrication and magnetic behavior of Co-Ni nanowire arrays with small diameters. Phys B 353:187–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Pereira
    • 1
  • C. Gallardo
    • 2
  • A. P. Espejo
    • 2
  • J. Briones
    • 2
    • 3
  • L. G. Vivas
    • 4
    • 5
  • M. Vázquez
    • 4
  • J. C. Denardin
    • 2
    • 3
  • J. Escrig
    • 2
    • 3
  1. 1.Departamento de MetalurgiaUniversidad de Santiago de Chile (USACH)SantiagoChile
  2. 2.Departamento de FísicaUniversidad de Santiago de Chile (USACH)SantiagoChile
  3. 3.Center for the Development of Nanoscience and Nanotechnology (CEDENNA)SantiagoChile
  4. 4.Institute of Materials Science of MadridCSICMadridSpain
  5. 5.Grupo de Física de la Materia Condensada, Departamento de FísicaUniversidad de los AndesBogotáColombia

Personalised recommendations