Advertisement

Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin

  • Yuyang Ni
  • Jun Li
  • Zhenzhen Huang
  • Ke He
  • Jiaqi Zhuang
  • Wensheng YangEmail author
Research Paper

Abstract

The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.

Keywords

Enzyme Catalytic activity Immobilization Horseradish peroxidase Bovine serum albumin Nanoparticle Nanobiotechnology 

Notes

Acknowledgments

This work is supported by the National Research Fund for Fundamental Key Project (Nos. 2011CB935800, 2009CB939701) and the National Natural Science Foundation of China (Nos. 21073078 and 51072064). We are grateful to Prof. M. Y. Han for valuable discussion.

Supplementary material

11051_2013_2038_MOESM1_ESM.doc (417 kb)
Supplementary material 1 (DOC 417 kb)

References

  1. Abad JM, Mertens SFL, Pita M, Fernández VM, Schiffrin DJ (2005) Functionalization of thiocticacid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689–5694. doi: 10.1021/ja042717i CrossRefGoogle Scholar
  2. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240. doi: 10.1021/ac070357m CrossRefGoogle Scholar
  3. Aubin-Tam ME, Zhou H, Hamad-Schifferli K (2008) Structure of cytochrome c at the interface with magnetic CoFe2O4 nanoparticles. Soft Matter 4:554–559. doi: 10.1039/B711937B CrossRefGoogle Scholar
  4. Baek H, Lee C, Park J, Kim Y, Koo B, Shin H, Wang DY, Cho J (2012) Layer-by-layer assembled Enzyme multilayer with adjustable memory performance and low power consumption via molecular-level control. J Mater Chem 22:4645–4651. doi: 10.1039/C2JM16231H CrossRefGoogle Scholar
  5. Bernardino S, Estrela N, Ochoa-Mendes V, Fernandes P, Fonseca LP (2011) Optimization in the immobilization of penicillin G acylase by entrapment in Xerogel particles with magnetic properties. J Sol-Gel Sci Technol 58:545–556. doi: 10.1007/s10971-011-2426-7 CrossRefGoogle Scholar
  6. Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39:263–270. doi: 10.1021/bi990729o CrossRefGoogle Scholar
  7. Choi Y, Cho Y, Kim M, Grailhe R, Song R (2012) Fluorogenic quantum dot-gold nanoparticles assembly for beta secretase inhibitor screening in live cell. Anal Chem 84:8595–8601. doi: 10.1021/ac301574b CrossRefGoogle Scholar
  8. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn edn. Wiley-VCH, New York, pp 120–121Google Scholar
  9. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv. Mater. 20: 4225–4241 and references therein. doi:  10.1002/adma.200703183 Google Scholar
  10. Draijer R, Atsma DE, Van der Laarse A, van Hinsbergh VW (1995) cGMP and nitric oxide modulate thrombin-induced endothelial permeability: regulation via different pathways in human aortic and umbilical vein endothelial cells. Circ Res 76:199–208. doi: 10.1161/01.RES.76.2.199 CrossRefGoogle Scholar
  11. Dunford HB (1999) Spectroscopy of horseradish peroxidase. I: optical, resonance Raman, magnetic circular dichroism, X-ray absorption, and diffraction. In: Heme peroxidases. Wiley, New York, pp 135–174Google Scholar
  12. Dunford HB, Stillman JS (1976) On the function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251. doi: 10.1016/S0010-8545(00)80316-1 CrossRefGoogle Scholar
  13. Feis A, Marzocchi MP, Mauro Paoli, Smulevich G (1994) Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures. Biochemistry 33:4577–4583. doi: 10.1021/bi00181a019 CrossRefGoogle Scholar
  14. Fischer NO, McIntosh CM, Simard JM, Rotello VM (2002) Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA 99:5018–5023. doi: 10.1073/pnas.082644099 CrossRefGoogle Scholar
  15. Fischer NO, Verma A, Goodman CM, Simard JM, Rotello VM (2003) Reversible “irreversible” inhibition of chymotrypsin using nanoparticle receptors. J Am Chem Soc 125:13387–13391. doi: 10.1021/ja0352505 CrossRefGoogle Scholar
  16. Frey A, Meckelein B, Externest D, Schmidt MA (2000) A stable and highly sensitive 3, 3′, 5, 5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods 233:47–56. doi: 10.1016/S0022-1759(99)00166-0 CrossRefGoogle Scholar
  17. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116. doi: 10.1021/bi00838a031 CrossRefGoogle Scholar
  18. Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126:739–743. doi: 10.1021/ja037470o CrossRefGoogle Scholar
  19. Howes BD, Rodriguez-Lopez JN, Smith AT, Smulevich G (1997) Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Biochemistry 36:1532–1543. doi: 10.1021/bi962502o CrossRefGoogle Scholar
  20. Hsu M-C, Woody RW (1971) The origin of the heme cotton effects in myoglobin and hemoglobin. J Am Chem Soc 93:3515–3525. doi: 10.1021/ja00743a036 CrossRefGoogle Scholar
  21. Iizuka T, Ogawaa S, Inubushi T, Yonezawaa T, Morishimaa I (1976) NMR studies of hemoproteins: pH dependence of ferric horseradish peroxidase and horse heart myoglobin. FEBS Lett 64:156–158. doi: 10.1016/0014-5793(76)80272-4 CrossRefGoogle Scholar
  22. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948. doi: 10.1021/ja074447k CrossRefGoogle Scholar
  23. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3, 5, 3′, 5′-tetramethylbenzidine free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675Google Scholar
  24. Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43: 6042–6108 and references therein. doi:  10.1002/anie.200400651
  25. Li M, Wang QY, Shi XD, Hornak LA, Wu NQ (2011) Detection of mercury (II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065. doi: 10.1021/ac2019014 CrossRefGoogle Scholar
  26. Morishima I, Ogawa S, Inubushi T, Yonezawa T, Iizuka T (1977) Nuclear magnetic resonance studies of hemoproteins acid-alkaline transition, ligand binding characteristics, and structure of the heme environments in horseradish peroxidase. Biochemistry 16:5109–5115. doi: 10.1021/bi00642a025 CrossRefGoogle Scholar
  27. Muñoz G, de Juan A (2007) pH- and time-dependent hemoglobin transitions: a case study for process modeling. Anal Chim Acta 595:198–208. doi: 10.1016/j.aca.2006.11.08 CrossRefGoogle Scholar
  28. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478. doi: 10.1016/0003-2697(72)90451-4 CrossRefGoogle Scholar
  29. Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534. doi: 10.1002/(SICI)1097-0290(19960305)49:5<527:AID-BIT5>3.0.CO;2-L CrossRefGoogle Scholar
  30. Rodrigues DS, Cavalcante GP, Silva GF, Ferreira ALO, Gonçalves LRB (2008) Effect of additives on the esterification activity of immobilized Candida Antarctica lipase. World J Microbiol Biotechnol 24:833–839. doi: 10.1007/s11274-007-9548-7 CrossRefGoogle Scholar
  31. Rodríguez-López JN, Gilabert MA, Tudela J, Thorneley RNF, García-Cánovas F (2000) Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry 39:13201–13209. doi: 10.1021/bi001150p CrossRefGoogle Scholar
  32. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi: 10.1021/ac60214a047 CrossRefGoogle Scholar
  33. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Cytochrome c on silica nanoparticles: iInfluence of nanoparticle size on protein structure, stability, and activity. Small 5:470–476. doi: 10.1002/smll.200800995 CrossRefGoogle Scholar
  34. Singh AK, Kilpatrick PK, Carbonell RG (1995) Noncompetitive immunoassays using bifunctional unilamellar vesicles or liposomes. Biotechnol Prog 11:333–341. doi: 10.1021/bp00033a014 CrossRefGoogle Scholar
  35. Soares CMF, Santana MHA, Zanin GM, de Castro HF (2003) Covalent coupling method for lipase immobilization on controlled pore silica in the presence of nonenzymatic proteins. Biotechnol Prog 19:803–807. doi: 10.1021/bp025779q CrossRefGoogle Scholar
  36. Tsaprailis G, Chan DWS, English AM (1998) Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism. Biochemistry 37:2004–2016. doi: 10.1021/bi971032a CrossRefGoogle Scholar
  37. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259. doi: 10.1016/j.phytochem.2003.10.022 CrossRefGoogle Scholar
  38. Wehtje E, Adlercreutz P, Mattiasson B (1993) Improved activity retention of enzymes deposited on solid supports. Biotechnol Bioeng 41:171–178. doi: 10.1002/bit.260410202 CrossRefGoogle Scholar
  39. Welsch N, Wittemann A, Ballauff M (2009) Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. J Phys Chem B 113:16039–16045. doi: 10.1021/jp907508w CrossRefGoogle Scholar
  40. Wu XY, Narsimhan G (2008a) Characterization of secondary and tertiary conformational changes of β-lactoglobulin adsorbed on silica nanoparticle surfaces. Langmuir 24:4989–4998. doi: 10.1021/la703349c CrossRefGoogle Scholar
  41. Wu XY, Narsimhan G (2008b) Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochim Biophys Acta 1784:1694–1701. doi: 10.1016/j.bbapap.2008.06.008 CrossRefGoogle Scholar
  42. Wu CZ, Bai S, Ansorge-Schumacher MB, Wang DY (2011) Nanoparticle cages for enzyme catalysis in organic media. Adv Mater 23:5694–5699. doi: 10.1002/adma.201102693 CrossRefGoogle Scholar
  43. You C-C, De M, Rotello VM (2005) Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with α-chymotrypsin. Org Lett 7:5685–5688. doi: 10.1021/ol052367k CrossRefGoogle Scholar
  44. Zhou HW, Xu Y, Zhou HM (2002) Activity and conformational changes of horseradish peroxidase in trifluoroethanol. Biochem Cell Biol 80:205–213. doi: 10.1139/o02-003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuyang Ni
    • 1
  • Jun Li
    • 1
  • Zhenzhen Huang
    • 1
  • Ke He
    • 1
  • Jiaqi Zhuang
    • 1
  • Wensheng Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations