Advertisement

Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

  • Neeta Jain-Gupta
  • Nipon Pothayee
  • Nikorn Pothayee
  • Ronald TylerJr.
  • David L. Caudell
  • Sharavanan Balasubramaniam
  • Nan Hu
  • Richey M. Davis
  • Judy S. Riffle
  • Nammalwar SriranganathanEmail author
Research Paper

Abstract

Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30–32 weight percentage of gentamicin. The zeta potential changed from −39 to −13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log10), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log10). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B. melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

Keywords

Brucella melitensis Gentamicin Chronic infection Magnetite Block ionomers Nanostructure Nanomedicine 

Notes

Acknowledgments

This work was supported by the Virginia Tech Institute for Critical Technology and Applied Sciences (ICTAS) and the National Science Foundation under Contract DMR-0805179. We thank Mrs. Kay Carlson and Garrett Smith for their help with mice experiments and preparation of this manuscript, respectively.

References

  1. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36CrossRefGoogle Scholar
  2. Al-Tawfiq JA (2008) Therapeutic options for human brucellosis. Expert Rev Anti Infect Ther 6(1):109–120. doi: 10.1586/14787210.6.1.109 CrossRefGoogle Scholar
  3. Anhalt JP (1977) Assay of gentamicin in serum by high-pressure liquid chromatography. Antimicrob Agents Chemother 11(4):651–655CrossRefGoogle Scholar
  4. Avgoustakis K (2004) Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 1(4):321–333CrossRefGoogle Scholar
  5. Bajema IM, Hagen EC, Hansen BE, Hermans J, Noel LH, Waldherr R, Ferrario F, van der Woude FJ, Bruijn JA (1996) The renal histopathology in systemic vasculitis: an international survey study of inter- and intra-observer agreement. Nephrol Dial Transplant 11(10):1989–1995CrossRefGoogle Scholar
  6. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, Moriyon I, Moreno E (2007) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2(7):e631CrossRefGoogle Scholar
  7. Capparelli R, Parlato M, Iannaccone M, Roperto S, Marabelli R, Roperto F, Iannelli D (2009) Heterogeneous shedding of Brucella abortus in milk and its effect on the control of animal brucellosis. J Appl Microbiol 106(6):2041–2047. doi: 10.1111/j.1365-2672.2009.04177.x CrossRefGoogle Scholar
  8. Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437. doi: 10.1002/wnan.143 CrossRefGoogle Scholar
  9. Corbel MJ (1997) Brucellosis: an overview. Emerg Infect Dis 3(2):213–221CrossRefGoogle Scholar
  10. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb) (9):941–949. doi: 10.1039/b514130c
  11. Haque N, Bari MS, Hossain MA, Muhammad N, Ahmed S, Rahman A, Hoque SM, Islam A (2011) An overview of Brucellosis. Mymensingh Med J 20(4):742–747Google Scholar
  12. Hasanjani Roushan MR, Mohraz M, Hajiahmadi M, Ramzani A, Valayati AA (2006) Efficacy of gentamicin plus doxycycline versus streptomycin plus doxycycline in the treatment of brucellosis in humans. Clin Infect Dis 42(8):1075–1080. doi: 10.1086/501359 CrossRefGoogle Scholar
  13. Hou S, Chaikof EL, Taton D, Gnanou Y (2003) Synthesis of water-soluble star-block and dendrimer-like copolymers based on poly(ethylene oxide) and poly(acrylic acid). Macromolecules 36:3874–3881CrossRefGoogle Scholar
  14. Joss N, Morris S, Young B, Geddes C (2007) Granulomatous interstitial nephritis. Clin J Am Soc Nephrol 2(2):222–230. doi: 10.2215/CJN.01790506 CrossRefGoogle Scholar
  15. Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W, Huang X (2010) Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 21(11):2128–2135. doi: 10.1021/bc100354m CrossRefGoogle Scholar
  16. Lecaroz C, Gamazo C, Blanco-Prieto MJ (2006) Nanocarriers with gentamicin to treat intracellular pathogens. J Nanosci Nanotechnol 6(9–10):3296–3302CrossRefGoogle Scholar
  17. Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C (2007) Poly(d, l-lactide-coglycolide) particles containing gentamicin: pharmacokinetics and pharmacodynamics in Brucella melitensis-infected mice. Antimicrob Agents Chemother 51(4):1185–1190. doi: 10.1128/AAC.00809-06 CrossRefGoogle Scholar
  18. Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM (2007) Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 223(1):86–98. doi: 10.1016/j.taap.2007.05.004 CrossRefGoogle Scholar
  19. Martirosyan A, Moreno E, Gorvel JP (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240(1):211–234. doi: 10.1111/j.1600-065X.2010.00982.x CrossRefGoogle Scholar
  20. Ogawara K, Yoshida M, Furumoto K, Takakura Y, Hashida M, Higaki K, Kimura T (1999) Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target 7(3):213–221. doi: 10.3109/10611869909085504 CrossRefGoogle Scholar
  21. Perkins SD, Smither SJ, Atkins HS (2010) Towards a Brucella vaccine for humans. FEMS Microbiol Rev. doi: 10.1111/j.1574-6976.2010.00211.x Google Scholar
  22. Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13(3):155–168CrossRefGoogle Scholar
  23. Pothaye N, Jain N, Vadala TP, Johnson LM, Mejia-Ariza R, Sriranganathan N, Davis RM, Riffle JS (2012) Block ionomer complexes for delivering polar antibiotics to kill intracellular Brucella melitensis in vitro. Polym Adv Technol 23(11):1484–1493. doi: 10.1002/pat.2070 CrossRefGoogle Scholar
  24. Pothayee N, Pothayee N, Jain N, Hu N, Balasubramaniam S, Johnson LM, Davis RM, Sriranganathan N, Riffle JS (2012) Magnetic block ionomer complexes for potential dual imaging and therapeutic agents. Chem Mater 24(11):2056–2063. doi: 10.1021/Cm3004062 CrossRefGoogle Scholar
  25. Prior S, Gander B, Lecaroz C, Irache JM, Gamazo C (2004) Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes. J Antimicrob Chemother 53(6):981–988. doi: 10.1093/jac/dkh227dkh227 CrossRefGoogle Scholar
  26. Prior S, Gander B, Irache JM, Gamazo C (2005) Gentamicin-loaded microspheres for treatment of experimental Brucella abortus infection in mice. J Antimicrob Chemother 55(6):1032–1036. doi: 10.1093/jac/dki144 CrossRefGoogle Scholar
  27. Ranjan A, Pothayee N, Seleem MN, Sriranganathan N, Kasimanickam R, Makris M, Riffle JS (2009a) In vitro trafficking and efficacy of core-shell nanostructures for treating intracellular Salmonella infections. Antimicrob Agents Chemother 53(9):3985–3988. doi: 10.1128/AAC.00009-09 CrossRefGoogle Scholar
  28. Ranjan A, Pothayee N, Seleem MN, Tyler RD Jr, Brenseke B, Sriranganathan N, Riffle JS, Kasimanickam R (2009b) Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine 4:289–297CrossRefGoogle Scholar
  29. Ristuccia AM, Cunha BA (1982) The aminoglycosides. Med Clin North Am 66(1):303–312Google Scholar
  30. Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N (2009) Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 294(1):24–31. doi: 10.1111/j.1574-6968.2009.01530.x CrossRefGoogle Scholar
  31. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062(1):77–82CrossRefGoogle Scholar
  32. Silverstein SC, Kabbash C (1994) Penetration, retention, intracellular localization, and antimicrobial activity of antibiotics within phagocytes. Curr Opin Hematol 1(1):85–91Google Scholar
  33. Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3(3):842–856. doi: 10.1021/am101196v CrossRefGoogle Scholar
  34. Skalsky K, Yahav D, Bishara J, Pitlik S, Leibovici L, Paul M (2008) Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. BMJ 336(7646):701–704. doi: 10.1136/bmj.39497.500903.25 CrossRefGoogle Scholar
  35. Solera J (2010) Update on brucellosis: therapeutic challenges. Int J Antimicrob Agents 36(Suppl 1):S18–20. doi: 10.1016/j.ijantimicag.2010.06.015 CrossRefGoogle Scholar
  36. Solera J, Espinosa A, Martinez-Alfaro E, Sanchez L, Geijo P, Navarro E, Escribano J, Fernandez JA (1997) Treatment of human brucellosis with doxycycline and gentamicin. Antimicrob Agents Chemother 41(1):80–84Google Scholar
  37. Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214CrossRefGoogle Scholar
  38. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440. doi: 10.1021/nl902715v CrossRefGoogle Scholar
  39. Vert M, Mauduit J, Li S (1994) Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15(15):1209–1213CrossRefGoogle Scholar
  40. Vitas AI, Diaz R, Gamazo C (1997) Protective effect of liposomal gentamicin against systemic acute murine brucellosis. Chemotherapy 43(3):204–210CrossRefGoogle Scholar
  41. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298. doi: 10.3109/09687688.2010.521200 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Neeta Jain-Gupta
    • 1
  • Nipon Pothayee
    • 2
  • Nikorn Pothayee
    • 2
  • Ronald TylerJr.
    • 1
  • David L. Caudell
    • 1
  • Sharavanan Balasubramaniam
    • 2
  • Nan Hu
    • 2
  • Richey M. Davis
    • 2
  • Judy S. Riffle
    • 2
  • Nammalwar Sriranganathan
    • 1
    Email author
  1. 1.Department of Biomedical Sciences and PathobiologyVirginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Macromolecules and Interfaces InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations