Nanotechnology and clean energy: sustainable utilization and supply of critical materials

  • Neil A. Fromer
  • Mamadou S. Diallo
Part of the following topical collections:
  1. Nanotechnology for Sustainable Development


Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.


Critical materials Clean energy Nanotechnology Urban mining 



Neil A. Fromer thanks the Resnick Sustainability Institute, as well as the LMI-EFRC, Rod Eggert, and Jack Lifton and the other attendees of the Resnick Institute critical materials workshop for helpful discussions. Mamadou Diallo thanks the EEWS Initiative (Grant # NT080607C0209721), the National Research Foundation of Korea (NRF) [MEST grant No. 2012M1A2A2026588] and the National Science Foundation (NSF) of United States [CBET grants 0948485 and 0506951] for funding his research on sustainable chemistry, engineering and materials (SusChEM).


  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mat 4:366–377CrossRefGoogle Scholar
  2. ARPA-E (Advanced Research Projects Agency-Energy) (2011) Rare earth alternatives in critical technologies (REACT).
  3. Ba C, Langer J, Economy J (2009) Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. J Membr Sci 327:49–58CrossRefGoogle Scholar
  4. Bian Z, Mia X, Lei S, Chen SE, Wang W, Stuthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337:702–703CrossRefGoogle Scholar
  5. Brinker JC, Ginger D (2011) Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Roco MC, Mirkin MC, Hersham M (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, New York, pp 261–303CrossRefGoogle Scholar
  6. Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218CrossRefGoogle Scholar
  7. Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785CrossRefGoogle Scholar
  8. Chen DP, Yu CJ, Chang C-Y, Wan Y, Frechet JMJ, Goddard WA, Diallo MS (2012) Branched polymeric media: perchlorate-selective resins from hyperbranched polyethyleneimine. Environ Sci Technol 46:10718–10726CrossRefGoogle Scholar
  9. Cheng S, Oatley DL, Williams PM, Wright CJ (2011) Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach. Adv Colloid Interface Sci 164:12–20CrossRefGoogle Scholar
  10. Cohen SM, Petoud S, Raymond KN (2001) Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers. Chemistry-A 7:272–279CrossRefGoogle Scholar
  11. Deceglie MG, Ferry VE, Alivisaos AP, Atwater HA (2012) Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett 12:2894–2900CrossRefGoogle Scholar
  12. Déon S, Escoda A, Fievet P (2011) A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem Eng Sci 66:2823–2832CrossRefGoogle Scholar
  13. Diallo MS (2008) Water treatment by dendrimer enhanced filtration. US Patent 7,470,369Google Scholar
  14. Diallo MS, Brinker JC (2011) Nanotechnology for sustainability: environment, water, food, minerals and climate. In: Roco MC, Mirkin MC, Hersham M (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Science policy reports. Springer, New York, pp 221–259CrossRefGoogle Scholar
  15. Diallo MS et al. (2013) Implications: convergence of knowledge and technology for a sustainable society. In: Roco MC, Bainbridge WS, Tonn B, Whitesides G (eds) Convergence of knowledge, technology, and society: beyond convergence of nano-bio-info-cognitive technologies. Science Policy Reports, Springer, DordrechtGoogle Scholar
  16. Diallo MS, Chritie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis L, Goddard WA, Johnson JH (2004) Dendritic chelating agents 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651CrossRefGoogle Scholar
  17. Diallo MS, Chritie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx–NH2 PAMAM dendrimers with ethylene diamine ore. Environ Sci Technol 39:1366–1377CrossRefGoogle Scholar
  18. Diallo MS, Wondwossen A, Johnson JH, Goddard WA (2008) Dendritic chelating agents 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ Sci Technol 42:1572–1579CrossRefGoogle Scholar
  19. DOE (Department of Energy) (2006) Basic research needs for advanced nuclear energy systems.
  20. Dvornic PR, Uppuluri S (2002) Rheology and solution properties of dendrimers. In: Fréchet JMJ, Tomalia DA (eds) Dendrimers and other dendritic polymers. Wiley, New YorkGoogle Scholar
  21. Escoda A, Lanteri Y, Fievet P, Déon S, Szymczyk A (2010) Determining the dielectric constant inside pores on nanofiltration membranes from membrane potential measurements. Langmuir 26:14628–14635CrossRefGoogle Scholar
  22. Fréchet JMJ, Tomalia DA (2002) Dendrimers and other dendritic polymers. Wiley, New YorkGoogle Scholar
  23. Fromer N, Eggert RG, Lifton J (2011) Critical materials for sustainable energy applications. Resnick Institute Report, California Institute of Technology.
  24. Gloe K, Stephan H, Grotjahn M (2003) Where is the anion extraction going? Chem Eng Technol 26:1107–1117CrossRefGoogle Scholar
  25. Gomes CP, Almeida MF, Loureiro JM (2001) Gold recovery with ion exchange used resins. Sep Purif Technol 24:35–57CrossRefGoogle Scholar
  26. Grandidier J, Callahan DM, Munday JN, Atwater HA (2012) Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE J Photovolt 2:123–128CrossRefGoogle Scholar
  27. Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386CrossRefGoogle Scholar
  28. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all inorganic nanocrystal solar cells processed from solution. Science 310:462–465CrossRefGoogle Scholar
  29. Harland CE (1994) Ion-exchange: theory and practice, 2nd edn. Royal Society of Chemistry, LondonGoogle Scholar
  30. IPCC (Intergovernmental Panel on Climate Change) (2007) Solomon, S, Quin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignor, M, Miller, HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  31. Ji Y, An Q, Zhao Q, Chen H, Gao C (2011) Preparation of novel positively charged copolymer membranes for nanofiltration. J Membr Sci 376:254–265CrossRefGoogle Scholar
  32. Johnson J, Harper EM, Lifset R, Graedel TE (2007) Dining at the periodic table: metals concentration as they relate to recycling. Environ Sci Technol 41:1759–1765CrossRefGoogle Scholar
  33. Kneller EF, Hawig R (1991) The exchange-spring magnet—a new material principle for permanent-magnets. IEEE Trans Magn 27:3588–3600CrossRefGoogle Scholar
  34. Krämer M, Stumbé JF, Grimm G, Kaufmann B, Krüger U, Webe M, Haag R (2004) ChemBioChem 5:1081–1087CrossRefGoogle Scholar
  35. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735CrossRefGoogle Scholar
  36. Liu XQ, He SH, Qiq JM, Wang JP (2011) Nanocomposite exchange-spring magnet synthesized by gas phase method: from isotropic to anisotropic. Appl Phys Lett 98:222507CrossRefGoogle Scholar
  37. Ma W, Luther JM, Zhend HM, Wu Y, Alivisatos AP (2009) Photovoltaic devices employing ternary PbSxSe1−x nanocrystals. Nano Lett 9:1699–1703CrossRefGoogle Scholar
  38. Maiti PK, Lin T, Cagin ST, Goddard WA (2005) The effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38:979–991CrossRefGoogle Scholar
  39. Martell AE, Hancock RD (1996) Metal complexes in aqueous solutions. Plenum Press, New YorkCrossRefGoogle Scholar
  40. Matejka Z, Parschova H, Ruszova P et al (2004) Selective uptake and separation of oxoanions of molybdenum, vanadium, tungsten, and germanium by synthetic sorbents having polyol moieties and polysaccharide-based biosorbents. In: Moyer BA, Singh P (eds) Fundamentals and applications of anion separations. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  41. Mckone J, Sadtler B, Werlang C, Lewis NS, Gray HB (2013) Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 3:166–169CrossRefGoogle Scholar
  42. Mishra H, Yu, CJ, Chen DP, Dalleska NF, Hoffmann MR, Goddard, WA, Diallo MS (2012) Branched polymeric media: boron-chelating resins from hyperbranched polyethyleneimine. Environ Sci Technol 46:8998–9004Google Scholar
  43. Moss R, Tzimas E, Kara H, Willis P, Kooroshy J (2011) Critical metals in strategic energy technologies. Publications Office of the European Union.
  44. Moyer BA, Bonnesen PV (1997) Physical factors in anion separations. In: Bianchi A, Bowman-James K, García-Espana E (eds) Supramolecular chemistry of anions. VCH, New York, pp 1–44Google Scholar
  45. Nakamuro E, Sato K (2011) Managing the scarcity of chemical elements. Nat Mat 10:158–161CrossRefGoogle Scholar
  46. NRC (National Research Council) (2008) Minerals, critical minerals, and the U.S. economy. ISBN: 0-309-11283Google Scholar
  47. O’Donnell KP, Maur MAD, Di Carlo A, Lorenz K (2012) It’s not easy being green: strategies for all-nitrides, all colour solid state lighting. Phys Stat Solidi 6:49–52Google Scholar
  48. Park S-J, Cheedrala RK, Diallo MS, Kim CH, Kim IS, Goddard WA (2012) Nanofiltration membranes based on polyvinyldene fluoride nanofibrous scaffolds and crosslinked polyethyleimine networks. J Nanopart Res 14:884CrossRefGoogle Scholar
  49. Raghavan P, Lim DH, Ahn JH et al (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72:915–930CrossRefGoogle Scholar
  50. Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337:690–695CrossRefGoogle Scholar
  51. Schäefer A, Fane AG, Waite TD (2005) Nanofiltration: principles and applications. Elsevier, New YorkGoogle Scholar
  52. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization and applications of dendrimer-encapsulated manoparticles. J Phys Chem B 109:692–704CrossRefGoogle Scholar
  53. Seiler M (2006) Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib 241:155–174CrossRefGoogle Scholar
  54. Shen Y, Huang MQ, Lee D, Bauser S, Higgins A, Chen C, Liu S (2006) Hybrid nanograin rare earth magnets with improved thermal stability. J Appl Phys 99:08B520Google Scholar
  55. Soldenhoff K, McCulloh J, Manis A, Macintosh P (2005) Nanofiltration in metal and acid recovery. In: Schäefer A, Fane AG, Waite TD (eds) Nanofiltration: principles and applications. Elsevier, New York, pp 459–477Google Scholar
  56. Strathmann H (2011) Introduction to membrane science and technology. Wiley-VCH, WeinheimGoogle Scholar
  57. Stricker N (2013) Reverse mining: scientists extract rare earth materials from consumer products.
  58. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New YorkGoogle Scholar
  59. Suntivich J, May K, Gasteiger H, Goodenough J, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385CrossRefGoogle Scholar
  60. Tomalia DA, Diallo MS (2012) Dendrimers: synthetic science to controlled organic nanostructures and a window to a new systematic framework for unifying nanoscience. In: Goddard WA, Brenner DW, Lyshevski SE, Iafrate GJ (eds) Handbook of nanoscience, engineering and technology, 3rd edn. CRC Press, Boca Raton, pp 413–467CrossRefGoogle Scholar
  61. Valdivia CE, Chow S, Fafard S, et al. (2010) Measurement of high efficiency 1 cm2 AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration. In: Proceedings of the 35th IEEE photovoltaic specialists conference (PVSC), pp 1253–1258Google Scholar
  62. Vankelecom IFJ, De Smet K, Gevers LEM, Jacobs PA (2005) Nanofiltration membrane materials and preparation. In: Schäefer A, Fane AG, Waite TD (eds) Nanofiltration: principles and applications. Elsevier, New York, pp 34–65Google Scholar
  63. Vezzani D, Bandini S (2002) Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desal 149:477–483CrossRefGoogle Scholar
  64. Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144CrossRefGoogle Scholar
  65. Zhang Y, Xie C, Su H et al (2011) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11:329–332CrossRefGoogle Scholar
  66. Zhao T, Zheng Y, Poly J, Wang W (2013) Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures. Nat Commun 4:1873. ( Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Resnick Sustainability InstituteCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Graduate School of Energy, Environment, Water and Sustainability (EEWS)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Environmental Engineering and Science, Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations