Advertisement

Rheology and microstructure of dilute graphene oxide suspension

  • Waka Tesfai
  • Pawan Singh
  • Youssef Shatilla
  • Muhammad Z. Iqbal
  • Ahmed A. Abdala
Research Paper

Abstract

Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3–1.8 nm thickness at lower concentrations to oblate compact structures of 1–18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger–Dougherty prediction is in a good agreement with the experimental measurement.

Keywords

Graphene oxide Nanofluids Rheology Intrinsic viscosity Suspension Aspect ratio 

Notes

Acknowledgments

The authors acknowledge Dr. Tewfik Souier for his assistance with AFM imaging.

References

  1. Anbia M, Hariri SA et al (2010) Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Appl Surf Sci 256(10):3228–3233CrossRefGoogle Scholar
  2. Azizian S, Haerifar M et al (2009) Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem Eng J 146(1):36–41CrossRefGoogle Scholar
  3. Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(01):97–117CrossRefGoogle Scholar
  4. Boluk Y, Lahiji R et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1):297–303CrossRefGoogle Scholar
  5. Cai W, Moore AL et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651CrossRefGoogle Scholar
  6. Chen H, Ding Y et al (2007) Rheological behaviour of nanofluids. New J Phys 9(10):367CrossRefGoogle Scholar
  7. Chen S, Zhang J et al (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252(1–3):149–156CrossRefGoogle Scholar
  8. Coleman JN, Khan U et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  9. Deng F, Zheng Q-S et al (2007) Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 90(2):021914-021914-021913CrossRefGoogle Scholar
  10. Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19(2):289–306CrossRefGoogle Scholar
  11. Gong JL, Wang B et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522CrossRefGoogle Scholar
  12. Grande L, Chundi VT et al (2012) Graphene for energy harvesting/storage devices and printed electronics. Particuology 10(1):1–8CrossRefGoogle Scholar
  13. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342. http://www.sciencedirect.com/science/article/pii/S0301479708003290#Google Scholar
  14. Güven N (1992) Molecular aspects of clay-water interactions. Clay-water interface and its rheological implications 4:2–79Google Scholar
  15. Iwamoto S, Lee S-H, et al (2013) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J. doi: 10.1038/pj.2013.64
  16. Jiang B, Liu C et al (2007) The effect of non-symmetric distribution of fiber orientation and aspect ratio on elastic properties of composites. Compos B Eng 38(1):24–34CrossRefGoogle Scholar
  17. Karagöz S, Tay T et al (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol 99(14):6214–6222CrossRefGoogle Scholar
  18. Kim H, Abdala AA et al (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRefGoogle Scholar
  19. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137CrossRefGoogle Scholar
  20. Kuhn W, Kuhn H (1945) Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen. Helv Chim Acta 28(1):97–127CrossRefGoogle Scholar
  21. Lee C-L, Chen C-H et al (2013a) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRefGoogle Scholar
  22. Lee SW, Kim KM et al (2013b) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356CrossRefGoogle Scholar
  23. Lerf A, He H et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRefGoogle Scholar
  24. Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58(1):32–39CrossRefGoogle Scholar
  25. Liu Z, Zhou A et al (2009) Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chin J Chem Eng 17(6):942–948CrossRefGoogle Scholar
  26. Ma W, Yang F et al (2013) Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf A 431:120–126CrossRefGoogle Scholar
  27. Novoselov K, Geim A et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666CrossRefGoogle Scholar
  28. Parra-Vasquez ANG, Stepanek I et al (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047CrossRefGoogle Scholar
  29. Potts JR, Dreyer DR et al (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25CrossRefGoogle Scholar
  30. Prud’homme RK, Aksay IA, et al (2008) Conductive ink containing thermally exfoliated graphite oxide and method of making a conductive circuit using the same, US patent App. 20,080/302,561Google Scholar
  31. Rafatullah M, Sulaiman O et al (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3):70–80CrossRefGoogle Scholar
  32. Teng M-Y, Lin S-H (2006) Removal of methyl orange dye from water onto raw and acid activated montmorillonite in fixed beds. Desalination 201(1–3):71–81CrossRefGoogle Scholar
  33. Yao Y, Xu F et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101(9):3040–3046CrossRefGoogle Scholar
  34. Yu W, Xie H et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323–1328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Waka Tesfai
    • 1
  • Pawan Singh
    • 1
  • Youssef Shatilla
    • 1
  • Muhammad Z. Iqbal
    • 2
  • Ahmed A. Abdala
    • 2
    • 3
  1. 1.Laboratory of Nano and MicrofluidicsMasdar Institute of Science and TechnologyAbu DhabiUAE
  2. 2.Department of Chemical EngineeringThe Petroleum InstituteAbu DhabiUAE
  3. 3.Department of Chemical Engineering and Petroleum Refining, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt

Personalised recommendations