Journal of Nanoparticle Research

, 15:1957 | Cite as

The transition from spark to arc discharge and its implications with respect to nanoparticle production

  • Esther Hontañón
  • Jose María Palomares
  • Matthias Stein
  • Xiaoai Guo
  • Richard Engeln
  • Hermann Nirschl
  • Frank Einar Kruis
Research Paper

Abstract

The synthesis of nanoparticles by means of electrical discharges between two electrodes in an inert gas at atmospheric pressure, as driven by a constant current ranging from a few milliamps to tens of amps, is investigated in this work. An extensive series of experiments are conducted with copper as a consumable electrode and pure nitrogen as the inert gas. Three different DC power supplies are used to drive electrical discharges for the entire operating current range. Then, three electrical discharge regimes (spark, glow, and arc) with distinct voltage–current characteristics and plasma emission spectra are recognized. For the first time, nanoparticles are synthesized by evaporation of an electrode by atmospheric pressure inert gas DC glow discharge of a few millimeters in size. The discharge regimes are characterized in terms of the mass output rate and the particle size distribution of the copper aerosols by means of online (tapered element oscillating microbalance, TEOM; and scanning mobility particle sizer, SPMS) and offline (gravimetric analysis; small and wide angle X-ray scattering, SWAXS; and transmission electron microscopy, TEM) techniques. The electrical power delivered to the electrode gap and the gas flow rate are two major parameters determining the aerosol mass output rate and the aerosol particle size distribution. The mass output rate of copper aerosols raises from 2 mg h−1 to 2 g h−1 when increasing the electrical power from 9 to 900 W. The particle mean size (SMPS d g) varies between 20 and 100 nm depending upon the electrical power and the gas flow rate, whereas the particle size dispersion (SMPS σ g) ranges from 1.4 to 1.7 and is only weakly dependent on the gas flow rate.

Keywords

Spark discharge Glow discharge Arc discharge Mass output rate Particle size distribution 

Notes

Acknowledgments

This work has been financially supported by the European Union′s Seventh Framework Program (EU FP7) under Grant Agreement No. 280765 (BUONAPART-E). Dr. Julio Gómez (Avanzare S.L., Logroño, Spain) is acknowledged for performing SEM analyses of copper powders.

References

  1. Akishev Y, Grushin M, Karalnik V, Petryakov A, Truskin N (2010) Non-equilibrium constricted DC glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes. J Phys D 43:075202CrossRefGoogle Scholar
  2. Arkhipenko VI, Kirillov AA, Safronau YA, Simonchik LV, Zgirouski SM (2009) Self-sustained DC atmospheric pressure normal glow discharge in helium: from microamps to amps. Plasma Sources Sci Technol 18:045013CrossRefGoogle Scholar
  3. Arkhipenko VI, Kirillov AA, Safronau YA, Simonchik LV, Zgirouski SM (2012) Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases. Eur Phys J D 66:252CrossRefGoogle Scholar
  4. Bartnikas R, Novak JP (1992) On the spark to pseudoglow and glow transition mechanism and discharge detectability. IEEE Trans Electr Insul 27:3–14CrossRefGoogle Scholar
  5. Bose AC, Shimizu Y, Mariotti D, Sasaki T, Terashima K, Koshizaki N (2006) Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing. Nanotechnology 17:5967–5982Google Scholar
  6. Chen J, Lu G, Zhu L, Flagan RC (2007) A simple and versatile mini-arc plasma source for nanocrystal synthesis. J Nanopart Res 9:203–213CrossRefGoogle Scholar
  7. Cole JJ, Lin ECh, Barry ChR, Jacobs HO (2009) Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge. Appl Phys Lett 95(113101):1–3Google Scholar
  8. Coulombe S, Meunier JL (1997) Thermo-field emission: a comparative study. J Phys D 30:776–780CrossRefGoogle Scholar
  9. Cundall CM, Craggs JD (1955) Electrode vapour jets in spark discharge. Spectrochim Acta 7:149–164CrossRefGoogle Scholar
  10. Daalder JE (1981) Cathode spots and vacuum arcs. Physica C 104:91–106CrossRefGoogle Scholar
  11. Finkelnburg W (1948) Electrode vapor jets in arc and spark discharges. Phys Rev 74:222–223CrossRefGoogle Scholar
  12. Förster H, Wolfrum C, Peukert W (2012) Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J Nanopart Res 14:926CrossRefGoogle Scholar
  13. Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low current arcs. J Appl Phys 45:667–671CrossRefGoogle Scholar
  14. Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15:1559CrossRefGoogle Scholar
  15. Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319CrossRefGoogle Scholar
  16. Hantzsche E (1979) The erosion rate of arc cathode spots by crater formation. Contrib Plasma Phys 20:61–67Google Scholar
  17. Hantzsche E (2003) Mysteries of the arc cathode spot: a retrospective glance. IEEE Trans Plasma Sci 31:799–808CrossRefGoogle Scholar
  18. He X, Scharer J, Booske J, Sengele S (2007) Modeling of cold emission cathode by inclusion of combined field and thermoionic emission processes. J Appl Phys 102:056107CrossRefGoogle Scholar
  19. Janda M, Martisovits V, Machala Z (2011) Transient spark: a DC-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sources Sci Technol 20:035015CrossRefGoogle Scholar
  20. Jenkins J, Jones TB (1957) Glow-arc transition in current stabilized electrical discharges. J Appl Phys 28:663–668CrossRefGoogle Scholar
  21. Jones FL (1950) Electrode erosion by spark discharges. Br J Appl Phys 1:60–65CrossRefGoogle Scholar
  22. Jones FL (1963) The mechanism of electrode erosion in electrical discharges. Platinum Metals Rev 7:58–65Google Scholar
  23. Karlsson MNA, Deppert K, Karlsson LS, Magnusson MH, Malm J-O, Srinivasan NS (2005) Compaction of agglomerates of aerosol nanoparticles: a compilation of experimental data. J Nanopart Res 7:43–49CrossRefGoogle Scholar
  24. Kulkarni NV, Karmakar S, Asthana SN, Nawale AB, Sheikh A, Patole SP, Yoo JB, Mathe VL, Das AK, Bhoraskar SV (2011) Study on growth of hollow nanoparticles of alumina. J Mater Sci 46:2212–2220CrossRefGoogle Scholar
  25. Lee SH (2010) Improving breakdown voltage characteristics of GDAs using trigger voltage. J Electr Eng Technol 5:646–652CrossRefGoogle Scholar
  26. Lee JG, Li P, Choi ChJ, Dong XL (2010) Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge. Thin Solid Films 519:81–85CrossRefGoogle Scholar
  27. Lu G, Chen J, Gajdardziska-Josifovska M (2005) Synthesis of tin oxide nanoparticles using a mini-arc plasma source. Mater Res Soc Symp Proc 876E:R8.7.1–R8.7.6Google Scholar
  28. Machala Z, Marode E, Laux CO, Kruger CH (2004) DC glow discharges in atmospheric pressure air. J Adv Oxid Technol 7(2):133–137Google Scholar
  29. Machala Z, Jedlovský I, Martisovits V (2008) DC discharges in atmospheric air and their transitions. IEEE Trans Plasma Sci 36:918–919CrossRefGoogle Scholar
  30. Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D 43:323001CrossRefGoogle Scholar
  31. Messing ME (2011) Engineered nanoparticles: generation, characterization and applications. PhD thesis, Lund University, Lund, SwedenGoogle Scholar
  32. Messing ME, Kimberley AD, Wallenberg LR, Deppert K (2009) Generation of size-selected gold nanoparticles by spark discharge—for growth of epitaxial nanowires. Gold Bull 42:20–26CrossRefGoogle Scholar
  33. Messing ME, Westerström R, Meuller BO, Blomberg S, Gustafson J, Andersen JN, Lundgren E, van Rijn R, Balmes O, Bluhm H, Deppert K (2010) Generation of Pd model catalyst nanoparticles by spark discharge. J Phys Chem C 114:9257–9263CrossRefGoogle Scholar
  34. Mollart TP (1993) Electron emission processes in cold cathode thermal arcs. PhD Thesis, Durham University, Durham, UKGoogle Scholar
  35. Mueller BO, Messing ME, Engberg DLJ, Jansson AM, Johansson LIM, Norlén SM, Tureson N, Deppert K (2012) Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci Technol 46:1256–1270CrossRefGoogle Scholar
  36. Pai DZ (2011) Nanomaterials synthesis at atmospheric pressure using nanosecond discharges. J Phys D 44:174024CrossRefGoogle Scholar
  37. Pai DZ, Lacoste DA, Laux CO (2010) Nanosecond repetitively pulsed discharge in air at atmospheric pressure—the spark regime. Plasma Sources Sci Technol 19:065015CrossRefGoogle Scholar
  38. Pilon AM (1957) Oscillations in direct current glow discharge. Phys Rev 107:25–27CrossRefGoogle Scholar
  39. Qiao H, Wei Z, Yang H, Zhu L, Yan X (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma. J Nanomater 2009:795928CrossRefGoogle Scholar
  40. Saepour M, Harry JE (1991) Temporary arc discharges resulting from glow-to-arc transitions and effect of power supply parameters (1991). Int J Electron 70:459–465CrossRefGoogle Scholar
  41. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19:639–642CrossRefGoogle Scholar
  42. Shin MG, Park DW (2010) Synthesis of copper nanopowders by transferred arc and non-transferred arc plasma synthesis. J Optoelectron Adv Mater 12:528–534Google Scholar
  43. Staack D, Farouk B, Gutsol A, Fridman A (2005) Characterization of a DC atmospheric pressure normal glow discharge. Plasma Sources Sci Technol 14:700–711CrossRefGoogle Scholar
  44. Staack D, Farouk B, Gutsol A, Fridman A (2008) DC normal glow discharges in atmospheric pressure atomic and molecular gases. Plasma Sources Sci Technol 17:025013CrossRefGoogle Scholar
  45. Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15:1400CrossRefGoogle Scholar
  46. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009a) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332CrossRefGoogle Scholar
  47. Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2009b) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11:1209–1218CrossRefGoogle Scholar
  48. Tabrizi NS, Xu Q, van der Pers NM, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12:247–259CrossRefGoogle Scholar
  49. Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn–Ag mixture by Ar–H2 arc for nanoparticle preparation. Thin Solid Films 516:6645–6649CrossRefGoogle Scholar
  50. Tao J, Ni J, Shih AJ (2012) Modeling of the anode crater formation in electrical discharge machining. J Manuf Sci Eng Trans ASME 134:011002CrossRefGoogle Scholar
  51. Vons VA (2010) Spark discharge generated nanoparticles for hydrogen storage applications. PhD thesis, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  52. Vons VA, Leegwater H, Legerstee WJ, Eijt SWH, Schmidt-Ott A (2010) Hydrogen storage properties of spark generated palladium nanoparticles. Int J Hydrogen Energy 35:5479–5489CrossRefGoogle Scholar
  53. Weber AP, Seipenbusch M, Thanner C, Kasper G (1999) Aerosol catalysis on nickel nanoparticles. J Nanopart Res 1:253–265CrossRefGoogle Scholar
  54. Weber AP, Seipenbusch M, Kasper G (2003) Size effects in the catalytic activity of unsupported metallic nanoparticles. J Nanopart Res 5:293–298CrossRefGoogle Scholar
  55. Weber AP, Davoodi P, Seipenbusch M, Kasper G (2006) Catalytic behavior of nickel nanoparticles: gasborne vs. supported state. J Nanopart Res 8:445–453CrossRefGoogle Scholar
  56. Wei Z, Xia T, Bai L, Wang J, Wu Z, Yan P (2006) Efficient preparation for Ni nanopowders by anodic arc plasma. Mater Lett 60:766–770CrossRefGoogle Scholar
  57. Wei Z, Liu L, Yang H, Zhang C, Feng W (2011) Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma. Trans Nonferrous Met Soc China 21:2016–2030Google Scholar
  58. Yahya AA, Harry JE (1999) Factors affecting the glow-to-arc transition at the cathode of an electric discharge at atmospheric pressure. Int J Electron 86:755–762CrossRefGoogle Scholar
  59. Yalin AP, Laux CO, Kruger CH, Zare RN (2002) Spatial profiles of N2 + concentration in an atmospheric pressure nitrogen glow discharge. Plasma Sources Sci Technol 11:248–253CrossRefGoogle Scholar
  60. Yu L, Laux CO, Packan DM, Kruger CH (2002) Direct-current glow discharges in atmospheric pressure air plasmas. J Appl Phys 91:2678–2686CrossRefGoogle Scholar
  61. Zhu L, Lu G, Mao S, Chen J (2007) Ripening of silver nanoparticles on carbon nanotubes. NANO Brief Rep Rev 2:149–156Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Esther Hontañón
    • 1
  • Jose María Palomares
    • 2
  • Matthias Stein
    • 1
  • Xiaoai Guo
    • 3
  • Richard Engeln
    • 2
  • Hermann Nirschl
    • 3
  • Frank Einar Kruis
    • 1
  1. 1.Institute for Technology of Nanostructures (NST) and Center for Nanointegration (CENIDE)University of Duisburg-EssenDuisburgGermany
  2. 2.Faculty of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Institute for Mechanical Process Engineering and Mechanics (MVM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations