A platelet-like CeO2 mesocrystal enclosed by {100} facets: synthesis and catalytic properties

  • Wei Deng
  • Xingyi Wang
  • Feng Jiao
  • Kake Zhu
Research Paper


Platelet-like CeO2 mesocrystals, constituted of 4–5 nm fused nanoparticles with interparticular voids along a common [002] axis, have successfully been synthesized through a benzyl alcohol-assisted solvothermal synthesis, followed by a topotactical transformation at 400 °C. The resulting CeO2 mesocrystal superstructure is enclosed by Tasker III type {100} facets. H2-TPR suggested that the as-made CeO2 mesocrystal surfaces are covered by reactive oxygen vacancies. Such oxygen vacancies can activate oxygen at low temperatures (<200 °C), and thereby catalyze CO and benzene oxidation effectively. Remarkably, the CO oxidation activity of CeO2 mesocrystal is 220 % as high as the traditional nanoparticle sample and a reaction rate of 0.53 μmol g cat −1  s−1 for CeO2 mesocrystal at 160 °C has been achieved. Such a rate is even higher than the best value reported previously (0.51 μmol g cat −1  s−1 for CeO2 nanorods). A similar superior catalytic property of CeO2 mesocrystals was also observed in the catalytic oxidation of more recalcitrant benzene.

Graphical Abstract

The formation scheme of mesocrystal CeO2 enclosed by Tasker III type {100} facets and the corresponding catalytic CO oxidation activity.


CeO2 Mesocrystal Tasker III surface CO oxidation Benzene oxidation 



KZ is grateful for the financial support from National Natural Science Foundation of China (21006024), CNPC Innovation Foundation (2011D-5006-0507), Shanghai Pujiang Program (11PJ1402600), and New Century Excellent Talents in University (NCET-11-0644).

Supplementary material

11051_2013_1944_MOESM1_ESM.doc (4.6 mb)
Supplementary material 1 (DOC 4761 kb)


  1. Arii T, Kishi A, Ogawa M, Sawada Y (2001) Thermal decomposition of cerium(III) acetate hydrate by a three-dimensional thermal analysis. Anal Sci 17:875–880CrossRefGoogle Scholar
  2. Bonzel HP, Krebs HJ (1982) Surface science approach to heterogenous catalysis: CO hydrogenation on transition-metals. Surf Sci 117:639–658CrossRefGoogle Scholar
  3. Carrettin S, Concepción P, Corma A, López Nieto JM, Puntes VF (2004) Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew Chem Int Ed 43:2538–2540CrossRefGoogle Scholar
  4. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591CrossRefGoogle Scholar
  5. Cölfen H, Antonietti M (2008) Mesocrystal Systems. Mesocrystals and nonclassical crystallization. John Wiley & Sons, Hoboken, pp 113–177CrossRefGoogle Scholar
  6. Dang F, Hoshino T, Oaki Y, Hosono E, Zhou H, Imai H (2013) Synthesis of Li–Mn–O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3. Nanoscale 5(6):2352–2357CrossRefGoogle Scholar
  7. Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501–016555CrossRefGoogle Scholar
  8. He C, Li P, Cheng J, Hao Z-P, Xu Z-P (2010) A Comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water Air Soil Poll 209:365–376CrossRefGoogle Scholar
  9. Huang M, Fabris S (2008) CO adsorption and oxidation on ceria surfaces from DFT+U calculations. J Phys Chem C 112:8643–8648CrossRefGoogle Scholar
  10. Huang X, Tang S, Yang J, Tan Y, Zheng N (2011) Etching growth under surface confinement: an effective strategy To prepare mesocrystalline Pd nanocorolla. J Am Chem Soc 133:15946–15949CrossRefGoogle Scholar
  11. Kalyani V, Vasile BS, Ianculescu A, Buscaglia MT, Buscaglia V, Nanni P (2012) Hydrothermal synthesis of SrTiO3 mesocrystals: single crystal to mesocrystal transformation induced by topochemical reactions. Cryst Growth Des 12:4450–4456CrossRefGoogle Scholar
  12. Kim HS, Kim TW, Koh HL, Lee SH, Min BR (2005) Complete benzene oxidation over Pt–Pd bimetal catalyst supported on γ-alumina: influence of Pt–Pd ratio on the catalytic activity. Appl Catal A 280:125–131CrossRefGoogle Scholar
  13. Li T-Y, Chiang S-J, Liaw B-J, Chen Y-Z (2011) Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts. App Catal B 103:143–148CrossRefGoogle Scholar
  14. Liu J, Huang X, Li Y, Sulieman KM, He X, Sun F (2006) Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology. Cryst Growth Des 6:1690–1696CrossRefGoogle Scholar
  15. Liu X, Zhou K, Wang L, Wang B, Li Y (2009a) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141CrossRefGoogle Scholar
  16. Liu Z, Wen XD, Wu XL, Gao YJ, Chen HT, Zhu J, Chu PK (2009b) Intrinsic dipole-field-driven mesoscale crystallization of core–shell ZnO mesocrystal microspheres. J Am Chem Soc 13:9405–9412CrossRefGoogle Scholar
  17. Lu R, Yuan J, Shi H, Li B, Wang W, Wang D, Cao M (2013) Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. Cryst Eng Comm 15:3984–3991CrossRefGoogle Scholar
  18. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385CrossRefGoogle Scholar
  19. McLaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541CrossRefGoogle Scholar
  20. Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287CrossRefGoogle Scholar
  21. Niederberger M, Krumeich F, Hegetschweiler K, Nesper R (2001) An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem Mater 14:78–82CrossRefGoogle Scholar
  22. Niederberger M, Bard MH, Stucky GD (2002) Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc 124:13642–13643CrossRefGoogle Scholar
  23. Oaki Y, Kotachi A, Miura T, Imai H (2006) Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv Funct Mater 16:1633–1639CrossRefGoogle Scholar
  24. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760CrossRefGoogle Scholar
  25. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed 47:2884–2887CrossRefGoogle Scholar
  26. Somorjai GA (1990) Mordren concepts in surface science and heterogeneous catalysis. J Phys Chem 94:1013–1023CrossRefGoogle Scholar
  27. Song R-Q, Cölfen H (2010) Mesocrystals-ordered nanoparticle superstructures. Adv Mater 22:1301–1330CrossRefGoogle Scholar
  28. Strickland–Constable RF (1968) Kinetics and mechanism of crystallization. Academic Press, New YorkGoogle Scholar
  29. Tang H, Chang JC, Shan Y, Lee S-T (2008) Surfactant-assisted alignment of ZnO nanocrystals to superstructures. J Phys Chem B 112:4016–4021CrossRefGoogle Scholar
  30. Tasker PW (1979) The stability of ionic crystal surfaces. J Phys C Solid State Phys 12:4977–4984CrossRefGoogle Scholar
  31. Wang T, Antonietti M, Cölfen H (2006) Calcite mesocrystals: “morphing” crystals by a polyelectrolyte. Chem Eur J 12:5722–5730CrossRefGoogle Scholar
  32. Weidenthaler C (2011) Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3:792–810CrossRefGoogle Scholar
  33. Wu XL, Xiong SJ, Liu Z, Chen J, Shen JC, Li TH, Wu PH, Chu PK (2011) Green light stimulates terahertz emission from mesocrystal microspheres. Nat Nano 6:103–106CrossRefGoogle Scholar
  34. Wu Z, Li M, Overbury SH (2012) On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal 285:61–73CrossRefGoogle Scholar
  35. Xu AW, Antonietti M, Cölfen H, Fang YP (2006) Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater 16:903–908CrossRefGoogle Scholar
  36. Yang S, Gao L (2006) Controlled synthesis and self-assembly of CeO2 nanocubes. J Am Chem Soc 128:9330–9331CrossRefGoogle Scholar
  37. Yang MX, Gracias DH, Jacobs PW, Somorjai GA (1998) Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies. Langmuir 14:1458–1464CrossRefGoogle Scholar
  38. Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2010) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRefGoogle Scholar
  39. Yu S-H, Colfen H, Tauer K, Antonietti M (2005) Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nat Mater 4:51–55CrossRefGoogle Scholar
  40. Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207CrossRefGoogle Scholar
  41. Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A (2011) Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett 11:361–364CrossRefGoogle Scholar
  42. Zhong L-S, Hu J-S, Cao A-M, Liu Q, Song W-G, Wan L-J (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655CrossRefGoogle Scholar
  43. Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229:206–212CrossRefGoogle Scholar
  44. Zhu K, Hu J, Kuebel C, Richards R (2006) Efficient preparation and catalytic activity of MgO(111) nanosheets. Angew Chem Int Ed 45:7277–7281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Lab for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA
  3. 3.UNILAB, State Key Lab of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations