Journal of Nanoparticle Research

, 15:1941 | Cite as

Direct observation of dynamic events of Au clusters on MgO(100) by HAADF-STEM

  • Y. Han
  • D. S. He
  • Z. Y. Li
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012


Direct atomic imaging of ultrasmall nanoclusters in three-dimension is challenging, not only because of the low signal to noise ratio, but also of the cluster–probe interaction that is often uncharacterized. Here, we report a study of Au nanoclusters (~3 nm) supported on MgO(100) surface using aberration-corrected scanning transmission electron microscopy. By applying the model-based method on successively acquired images, the number of atoms in the projected atomic columns of a cluster was analyzed, allowing for the reconstruction of its 3D structures. It is found that the total number of atoms within the cluster fluctuated under the intense electron beam and the cluster became strongly elongated along the e-beam illumination direction. This study highlights the importance of atom counting with single atom sensitivity. The reported approach is particularly useful in dealing with practical difficulties associated with the characterization of ultrasmall clusters.


Aberration-correction STEM Atom counting Au clusters MgO 



We acknowledge the financial support from the EPSRC UK (Grant Number EP/G070326/1). The STEM instrument employed in this research was funded through the Birmingham Science City project “Creating and Characterising Next Generation Advanced Materials” by AWM and ERDF. DSH would like to thank the University of Birmingham and the China Scholarship Council for providing the PhD scholarship.

Supplementary material

11051_2013_1941_MOESM1_ESM.pdf (905 kb)
Supplementary material 1 (PDF 904 kb)


  1. Ajayan PM, Marks LD (1989a) Experimental-evidence for quasimelting in small particles. Phys Rev Lett 63(3):279–282CrossRefGoogle Scholar
  2. Ajayan PM, Marks LD (1989b) Evidence for sinking of small particles into substrates and implications for heterogeneous catalysis. Nature 338(6211):139–141CrossRefGoogle Scholar
  3. Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3(6):1431–1436CrossRefGoogle Scholar
  4. Bruma A, Negreiros FR, Xie S, Tsukuda R, Johnston RL, Fortunelli A, Li ZY (2013) Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst. Nanoscale. doi: 10.1039/C3NR01852K Google Scholar
  5. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150CrossRefGoogle Scholar
  6. den Dekker AJ, Van Aert S, van den Bos A, Van Dyck D (2005) Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part i: a theoretical framework. Ultramicroscopy 104(2):83–106CrossRefGoogle Scholar
  7. Freund HJ (2002) Clusters and islands on oxides: from catalysis via electronics and magnetism to optics. Surf Sci 500(1–3):271–299CrossRefGoogle Scholar
  8. Goris B, Van den Bals S, Broek W, Carbo-Argibay E, Gomes-Grana S, Liz-Marzan LM, Van Tendeloo G (2012) Atomic-scale determination of surface facets in gold nanorods. Nat Mater 11:930–935CrossRefGoogle Scholar
  9. Han Y, He DS, Liu Y, Xie S, Tsukuda T, Li ZY (2012) Size and shape of nanoclusters: single-shot imaging approach. Small 8(15):2361–2364CrossRefGoogle Scholar
  10. Hartel P, Rose H, Dinges C (1996) Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2):93–114CrossRefGoogle Scholar
  11. Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37(1–2):27–36CrossRefGoogle Scholar
  12. Henry CR (2005) Morphology of supported nanoparticles. Prog Surf Sci 80(3–4):92–116CrossRefGoogle Scholar
  13. Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56(6):616–619CrossRefGoogle Scholar
  14. Jones L, Nellist PD (2013) Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc Microanal 2013:1–11Google Scholar
  15. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288):571–574CrossRefGoogle Scholar
  16. LeBeau JM, Stemmer S (2008) Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12):1653–1658CrossRefGoogle Scholar
  17. LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101CrossRefGoogle Scholar
  18. LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2010) Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11):4405–4408CrossRefGoogle Scholar
  19. Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174):46–48CrossRefGoogle Scholar
  20. Liu Y, Jia CJ, Yamasaki J, Terasaki O, Schuth F (2010) Highly active iron oxide supported gold catalysts for CO oxidation: how small must the gold nanoparticles be? Angew Chem Int Ed 49(33):5771–5775CrossRefGoogle Scholar
  21. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Norskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223(1):232–235CrossRefGoogle Scholar
  22. Marks LD (1994) Experimental studies of small-particle structures. Rep Prog Phys 57(6):603–649CrossRefGoogle Scholar
  23. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New YorkCrossRefGoogle Scholar
  24. Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. Adv Imaging Electron Phys 113:147–203CrossRefGoogle Scholar
  25. Pearmain D, Park SJ, Wang ZW, Abdela A, Palmer, Li ZY (2013) Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards. Appl Phys Lett 102(16):163103CrossRefGoogle Scholar
  26. Peng LM, Ren G, Ddarev SL, Whelan MJ (1996) Debye–Waller factors and absorptive scattering factors of elemental cyrstals. Acta Cryst A52:456–470CrossRefGoogle Scholar
  27. Smith DJ, Petfordlong AK, Wallenberg LR, Bovin JO (1986) Dynamic atomic-level rearrangements in small gold particles. Science 233(4766):872–875CrossRefGoogle Scholar
  28. Turner PS, Bullough TJ, Devenish RW, Maher DM, Humphreys CJ (1990) Nanometer hole formation in MgO using electron-beams. Phil Mag Lett 61(4):181–193CrossRefGoogle Scholar
  29. Van Aert S, den Dekker AJ, van den Bos A, Van Dyck D, Chen JH (2005) Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part ii: a practical example. Ultramicroscopy 104(2):107–125CrossRefGoogle Scholar
  30. Van Aert S, Batenburg KJ, Rossell MD, Erni R, Van Tendeloo G (2011) Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334):372–375Google Scholar
  31. Van Aert S, De Backer A, Martinez GT, Goris B, Bals S, Van Tendeloo G (2013) Procedure to count atoms with trustworthy single-atom sensitivity. Phys Rev B 87:064107CrossRefGoogle Scholar
  32. Young NP, Li ZY, Chen Y, Palomba S, Di Vece M, Palmer RE (2008) Weighing supported nanoparticles: size-selected clusters as mass standards in nanometrology. Phys Rev Lett 101(24):246103CrossRefGoogle Scholar
  33. Zhou W, Wachs IE, Kiely CJ (2012) Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr Opin Solid State Mat Sci 16(1):10–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Nanoscale Physics Research Laboratory, School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations