Journal of Nanoparticle Research

, 15:1924 | Cite as

Controlled preparation of carbon nanotube–iron oxide nanoparticle hybrid materials by a modified wet impregnation method

  • Τheodoros TsoufisEmail author
  • Alexios P. Douvalis
  • Christina E. Lekka
  • Pantelis N. Trikalitis
  • Thomas Bakas
  • Dimitrios Gournis
Research Paper


We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle’s precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.


Iron oxide nanoparticles Carbon nanotube Hybrid magnetic materials Mössbauer TEM DFT calculations 

Supplementary material

11051_2013_1924_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 25 kb)


  1. Ago H, Nakamura K, Uehara N, Tsuji M (2004) Roles of metals-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO. J Phys Chem B 108(49):18908–18915CrossRefGoogle Scholar
  2. Andriotis AN, Menon M, Froudakis GE (2000) Various bonding configurations of transition-metal atoms on carbon nanotubes: their effect on contact resistance. Appl Phys Lett 76(26):3890–3892CrossRefGoogle Scholar
  3. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Linear-scaling ab initio calculations for large and complex systems. Phys Status Solidi B 215(1):809–817CrossRefGoogle Scholar
  4. Azardi P, Farnood R, Meier E (2010) Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method. J Phys Chem A114(11):3962–3968CrossRefGoogle Scholar
  5. Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824CrossRefGoogle Scholar
  6. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123(27):6536–6542CrossRefGoogle Scholar
  7. Ci L, Zhou Z, Yan X, Liu D, Yuan H, Song L, Wang J, Gao Y, Zhou J, Zhou W, Wang G, Xie S (2003) Raman characterization and tunable growth of double-wall carbon nanotubes. J Phys Chem B 107(34):8760–8764CrossRefGoogle Scholar
  8. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, WeinheimCrossRefGoogle Scholar
  9. Corr SA, Gunko YK, Douvalis AP, Venkatesan M, Gunning RD, Nellist PD (2008) From nanocrystals to nanorods: new iron oxide–silica nanocomposites from metallorganic precursors. J Phys Chem C 112:1008CrossRefGoogle Scholar
  10. Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109(41):19060–19063CrossRefGoogle Scholar
  11. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  12. Cullity BD, Graham CD (2009) Introduction to magnetic materials. John Wiley & Sons, HobokenGoogle Scholar
  13. Douvalis AP, Georgakilas V, Tsoufis T, Gournis D, Kooi B, Bakas T (2010a) Revealing the interparticle magnetic interactions of iron oxide nanoparticles-carbon nanotubes hybrid materials. J Phys 217:012093Google Scholar
  14. Douvalis AP, Polymeros A, Bakas T (2010b) IMSG09: a 57Fe-119Sn Mössbauer spectra computer fitting program with novel interactive user interface. J Phys 217:012014Google Scholar
  15. Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40(12):2043–2061CrossRefGoogle Scholar
  16. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159CrossRefGoogle Scholar
  17. Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15(16):3198–3201CrossRefGoogle Scholar
  18. Ellis AV, Vijayamohanan K, Goswami R, Chakrapani N, Ramanathan LS, Ajayan PM, Ramanath G (2003) Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett 3(3):279–282CrossRefGoogle Scholar
  19. Fang XS, Ye CH, Zhang LD, Wang YH, Wu YC (2005) Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv Funct Mater 15(1):63–68CrossRefGoogle Scholar
  20. Fiorani D (2005) Surface Effects in Magnetic Nanoparticles. Springer, New YorkGoogle Scholar
  21. Froudakis GE, Schnell M, Mühlhäuser M, Peyerimhoff SD, Andriotis AN, Menon M, Sheetz RM (2003) Pathways for oxygen adsorption on single-wall carbon nanotubes. Phys Rev B 68 (11):1154351–1154355Google Scholar
  22. Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126(19):6095–6105CrossRefGoogle Scholar
  23. Gao C, Li W, Morimoto H, Nagaoka Y, Maekawa T (2006) Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J Phys Chem B 110(14):7213–7220CrossRefGoogle Scholar
  24. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17(26):2679–2694CrossRefGoogle Scholar
  25. Georgakilas V, Bourlinos A, Gournis D, Tsoufis T, Trapalis C, Mateo-Alonso A, Prato M (2008) multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites. J Am Chem Soc 130(27):8733–8740CrossRefGoogle Scholar
  26. Gialampouki MA, Lekka CE (2011) Ti N decoration of single-wall carbon nanotubes and graphene by density functional theory computations. J Phys Chem C 115(31):15172–15181CrossRefGoogle Scholar
  27. Gialampouki MA, Balerba AV, Lekka CE (2012) Structural and electronic properties of Ti-nanowires/C-single wall nanotubes composites by density functional theory calculations. Mater Chem Phys 134(1):214–218CrossRefGoogle Scholar
  28. Gubin SP (2009) Magnetic nanoparticles. Wiley, WeinheimCrossRefGoogle Scholar
  29. Guldi DM, Zerbetto F, Georgakilas V, Prato M (2005) Ordering fullerene materials at manometer dimensions. Acc Chem Res 38(1):38–43CrossRefGoogle Scholar
  30. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  31. Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19(5):639–655CrossRefGoogle Scholar
  32. Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4(5):399–413CrossRefGoogle Scholar
  33. Hua J, Wang Z, Zhao J, Zhang J, Li R, Nie N, Sun X (2011) A facile approach to synthesize poly(4-vinylpyridine)/multi-walled carbon nanotubes nanocomposites: highly water-dispersible carbon nanotubes decorated with gold nanoparticles. Colloid Polym Sci 289(7):783–789CrossRefGoogle Scholar
  34. Jia B, Gao L, Sun J (2007) Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 45(7):1476–1481CrossRefGoogle Scholar
  35. Jørgensen JE, Mosegaard L, Thomsen LE, Jensen TR, Hanson JC (2007) Formation of γ-Fe2O3 nanoparticles and vacancy ordering: an in situ X-ray powder diffraction study. J Solid State Chem 180(1):180–185CrossRefGoogle Scholar
  36. Karakassides MA, Gournis D, Bourlinos AB, Trikalitis PN, Bakas T (2003) Magnetic Fe2O3–Al2O3 composites prepared by a modified wet impregnation method. J Mater Chem 13(4):871–876CrossRefGoogle Scholar
  37. Kardimi K, Tsoufis T, Tomou A, Kooi BJ, Prodromidis MI, Gournis D (2012) Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance. Inter J Hydrog Energ 37(2):1243–1253CrossRefGoogle Scholar
  38. Kim HS et al (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B109(18):8983–8986CrossRefGoogle Scholar
  39. Knauth P, Schoonman J (2002) Nanocrystalline metals and oxides: selected properties and applications. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  40. Lafi L, Cossement D, Chahine R (2005) Raman spectroscopy and nitrogen vapour adsorption for the study of structural changes during purification of single-wall carbon nanotubes. Carbon 43(7):1347–1357CrossRefGoogle Scholar
  41. Lin Y, Xiaoli C (2005) Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J Phys Chem B 109(30):14410–14415CrossRefGoogle Scholar
  42. Liu SJ, Huang CH, Huang CK, Hwang WS (2009) Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC. Chem Com 32:4809–4811CrossRefGoogle Scholar
  43. Lyu SC, Liu BC, Lee CJ, Kang HK, Yang CW, Park CY (2003) High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chem Mater 15(20):3951–3954CrossRefGoogle Scholar
  44. Maccallini E, Tsoufis T, Policicchio A, La Rosa S, Caruso T, Chiarello G, Colavita E, Formoso V, Gournis D, Agostino RG (2010) A spectro-microscopic investigation of Fe-Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon 48(12):3434–3445CrossRefGoogle Scholar
  45. Makhlouf SA, Parker FT, Spada FE, Berkowitz AE (1997) Magnetic anomalies in NiO nanoparticles. J Appl Phys 81:5561CrossRefGoogle Scholar
  46. Morrish AH (1994) Canted Antiferromagnetism. Haematite World Scientific, SingaporeGoogle Scholar
  47. Mørup S (1983) Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J Magn Magn Mater 37:39–50CrossRefGoogle Scholar
  48. Mørup S (1990) Mössbauer effect in small particles. Hyperfine Interact 60:959–963CrossRefGoogle Scholar
  49. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870CrossRefGoogle Scholar
  50. Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414CrossRefGoogle Scholar
  51. Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube–nanocrystal heterostructures. Chem Soc Rev 38(4):1076–1098CrossRefGoogle Scholar
  52. Rai PK, Parra-Vasquez ANG, Chattopadhyay J, Pinnick RA, Liang F, Sadana AK, Hauge RH, Edward Billups W, Pasquali M (2007) Dispersions of functionalized single-walled carbon nanotubes in strong acids: solubility and rheology. J Nanosci Nanotechnol 7(10):3378–3385CrossRefGoogle Scholar
  53. Rao CNR, Govindaraj A (2005) Nanotubes and Nanowires. RSC Publishing, CambridgeGoogle Scholar
  54. Rao CNR, Kulkarni GU, Thomas PJ, Peter PE (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8(1):28–35CrossRefGoogle Scholar
  55. Rowan AD, Patterson CH, Gasparov LV (2009) Hybrid density functional theory applied to magnetite: crystal structure, charge order, and phonons. Phys Rev B 79(20):205103CrossRefGoogle Scholar
  56. Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Density-functional method for very large systems with LCAO basis sets. Int J Quantum Chem 65(5):453–461CrossRefGoogle Scholar
  57. Serp P, Philippot C (2013) Nanomaterials in Catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  58. Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3(4):865–870CrossRefGoogle Scholar
  59. Singh RA, Premkumar TA, Shin JY, Geckeler KE (2010) Carbon nanotube and gold-based materials: a symbiosis. Chem Eur J 16(6):1728–1743CrossRefGoogle Scholar
  60. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys 14(11):2745–2779Google Scholar
  61. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi: 10.1126/science.1077229 CrossRefGoogle Scholar
  62. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRefGoogle Scholar
  63. Sun X, Huang Y, Nickles DE (2004) FePt and CoPt magnetic nanoparticles film for future high density data storage media. Inter J Nanotechnol 1(3):328–346CrossRefGoogle Scholar
  64. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chemistry 9(17):4000–4008CrossRefGoogle Scholar
  65. Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19(23):5765–5772CrossRefGoogle Scholar
  66. Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides MA (2007) Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO. Diam Relat Mater 16(1):155–160CrossRefGoogle Scholar
  67. Tsoufis T, Tomou A, Gournis D, Douvalis AP, Panagiotopoulos I, Kooi B, Georgakilas V, Arfaoui I, Bakas T (2008) Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes. J Nanosci Nanotechnol 8(11):5942–5951CrossRefGoogle Scholar
  68. Wang Y, Xu X, Tian Z, Zong Y, Cheng H, Lin C (2006) Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution. Chem Eur J 12(9):2542–2549CrossRefGoogle Scholar
  69. Wang H, Cao L, Yan S, Huang N, Xiao Z (2009) An efficient method for decoration of the multiwalled carbon nanotubes with nearly monodispersed magnetite nanoparticles. Mater Sci Engine B 164(3):191–194CrossRefGoogle Scholar
  70. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on Carbon nanotubes: methods and applications. Small 2(2):182–193CrossRefGoogle Scholar
  71. Wu HC, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052CrossRefGoogle Scholar
  72. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  73. Zhang Z, Satpathy S (1991) Electron states, magnetism, and the Verwey transition in magnetite. Phys Rev B 44(24):13319–13331CrossRefGoogle Scholar
  74. Zhang W, Zong P, Zheng X, Wang L (2013) An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes BiosensBioelectron 42(1):481–485Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Τheodoros Tsoufis
    • 1
    Email author
  • Alexios P. Douvalis
    • 2
  • Christina E. Lekka
    • 1
  • Pantelis N. Trikalitis
    • 3
  • Thomas Bakas
    • 2
  • Dimitrios Gournis
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Physics DepartmentUniversity of IoanninaIoanninaGreece
  3. 3.Department of ChemistryUniversity of CreteHeraklionGreece

Personalised recommendations