Journal of Nanoparticle Research

, 15:1922 | Cite as

Polyacrylamide–metal nanocomposites: one-pot synthesis, antibacterial properties, and thermal stability

  • Cuiyan Li
  • Yanling Cai
  • Yihua Zhu
  • Mingguo Ma
  • Wei Zheng
  • Jiefang Zhu
Research Paper


The incorporation of inorganic nanoparticles into polymers is a hot research spot, since it endows the nanocomposites with new or improved properties by exploiting synergistic effects. Here we report a facile one-pot synthesis of polyacrylamide (PAM)–metal (M = Au, Ag, or Pd) nanocomposites in ethylene glycol (EG). The simultaneous polymerization of the acylamide (AM) monomer and formation of metal nanoparticles lead to a homogeneous distribution of metal nanoparticles in the PAM matrix. The sizes of Au, Ag, and Pd nanoparticles are 55.50 ± 10.6, 14.15 ± 2.57, and 7.74 ± 1.82 nm, respectively. The reaction system only includes EG, AM monomer, and corresponding metal salt. EG acts as both the solvent and the reducing reagent. Also, no initiator for AM polymerization and no surfactant for stabilization of metal nanoparticles are used. Furthermore, this simple synthetic route does not rely on any special or expensive equipment, thus can be exploited to the synthesis of similar polymer–inorganic nanocomposites. Compared to PAM, the PAM–metal nanocomposites showed enhanced thermal stability and antibacterial properties.


Nanocomposite One-pot synthesis PAM Noble metal Antibacterial properties Thermal stability 



This work was financially supported by Ångpanneföreningen’s Foundation for Research and Development, J. Gust. Richert Foundation, the Swedish Association of Graduate Engineers, the National Natural Science Foundation of China (20925621, 20976054, and 21176083), and Opening Project of the Key Laboratory for Ultrafine Materials of the Ministry of Education in East China University of Science and Technology.

Supplementary material

11051_2013_1922_MOESM1_ESM.doc (3.1 mb)
Supplementary materials available: Molecular weight of PAM prepared at different temperatures, TEM micrographs of PAM-Au prepared at 90 °C and 140 °C, TEM micrographs of PAM-Au prepared at 115 °C with different pre-polymerization time, t1 (t1 = 30, 60, and 90 min), and the antibacterial effect of naked silver nanoparticles and the mixture of PAM and Ag nanoparticles (3202 kb)


  1. Alonso A, Muñoz-Berbel X, Vigués N et al (2012) Characterization of fibrous polymer silver/cobalt nanocomposite with enhanced bactericide activity. Langmuir ACS J Surf Colloids 28:783–790. doi: 10.1021/la203239d CrossRefGoogle Scholar
  2. Bai J, Li Y, Du J et al (2007) One-pot synthesis of polyacrylamide–gold nanocomposite. Mater Chem Phys 106:412–415. doi: 10.1016/j.matchemphys.2007.06.021 CrossRefGoogle Scholar
  3. Baldock C, Rintoul L, Keevil SF et al (1998) Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Phys Med Biol 43:3617–3627. doi: 10.1088/0031-9155/43/12/017 CrossRefGoogle Scholar
  4. Duarte ASR, Amorim da Costa AM, Amado AM (2005) On the conformation of neat acrylamide dimers—a study by ab initio calculations and vibrational spectroscopy. J Mol Struct (Thoechem) 723:63–68. doi: 10.1016/j.theochem.2005.02.008 CrossRefGoogle Scholar
  5. Fievet F, Lagier J, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 33:198–205CrossRefGoogle Scholar
  6. Hu J, Liang H, Wan L, Bai C (2003) Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15:4332–4336. doi: 10.1021/cm0343397 CrossRefGoogle Scholar
  7. Jallapuram R, Naydenova I, Byrne HJ, et al. (2005) Investigation of polymerization rate in an acrylamide-based photopolymer using Raman spectroscopy. Proc SPIE 5826: 75–82Google Scholar
  8. Jallapuram R, Naydenova I, Byrne HJ et al (2008) Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer. Appl Opt 47:206–212CrossRefGoogle Scholar
  9. Jirasek AI, Duzenli C, Audet C, Eldridge J (2001) Characterization of monomer/crosslinker consumption and polymer formation observed in FT-Raman spectra of irradiated polyacrylamide gels. Phys Med Biol 46:151–165CrossRefGoogle Scholar
  10. Jonathan N (1961) The infrared and Raman spectra and structure of acrylamide. J Mol Spectrosc 214:205–214CrossRefGoogle Scholar
  11. Joshi L, Prakash R (2011) One-pot synthesis of Polyindole–Au nanocomposite and its nanoscale electrical properties. Mater Lett 65:3016–3019. doi: 10.1016/j.matlet.2011.06.036 CrossRefGoogle Scholar
  12. Krishnan K, Krishnan R (1966) Raman and infrared spectra of ethylene glycol. Proc Indian Acad Sci Sect A 2:111–123. doi: 10.1007/BF03047675 Google Scholar
  13. Lu X, Rycenga M, Skrabalak SE et al (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192. doi: 10.1146/annurev.physchem.040808.090434 CrossRefGoogle Scholar
  14. Luan J, Wang S (2012) Synthesis techniques, properties and applications of polymer nanocomposites. Curr Org Synth 86:114–136CrossRefGoogle Scholar
  15. Mbhele ZH, Salemane MG, Van Sittert CGCE et al (2003) Fabrication and characterization of silver—polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024. doi: 10.1021/cm034505a CrossRefGoogle Scholar
  16. Mukherjee S, Mukherjee M (2006) Nitrogen-mediated interaction in polyacrylamide–silver nanocomposites. J Phys Condens Matter 18:11233–11242. doi: 10.1088/0953-8984/18/49/015 CrossRefGoogle Scholar
  17. Murthy PSK, Murali Mohan Y, Varaprasad K et al (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217–224. doi: 10.1016/j.jcis.2007.10.014 CrossRefGoogle Scholar
  18. Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised Raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505–512Google Scholar
  19. Ni Y, Ge X (2002) In situ single-step synthesis of gold/polyacrylamide nanocomposites in an ethanol system. Mater Lett 55:171–174CrossRefGoogle Scholar
  20. Pardo-Yissar V, Gabai R, Shipway a N et al (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13:1320. doi: 10.1002/1521-4095(200109)13:17<1320:AID-ADMA1320>3.0.CO;2-8 CrossRefGoogle Scholar
  21. Šajinović D, Šaponjić ZV, Cvjetićanin N et al (2000) Synthesis and characterization of CdS quantum dots–polystyrene composite. Chem Phys Lett 329:168–172. doi: 10.1016/S0009-2614(00)00990-8 CrossRefGoogle Scholar
  22. Saravanan P, Padmanabha Raju M, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 103:278–282. doi: 10.1016/j.matchemphys.2007.02.025 CrossRefGoogle Scholar
  23. Sarkar A, Kapoor S, Yashwant G et al (2005) Preparation and characterization of ultrafine Co and Ni particles in a polymer matrix. J Phys Chem B 109:7203–7207. doi: 10.1021/jp044521a CrossRefGoogle Scholar
  24. Sarkar A, Hegde S, Mukherjee T, Kapoor S (2010) Photo-induced formation of silver nanoparticles and polymerization of acrylamide derivatives. Res Chem Intermed 36:309–318. doi: 10.1007/s11164-010-0141-6 CrossRefGoogle Scholar
  25. Song Y, Li Z, Wang L et al (2008) One-step preparation of hybrid materials of polyacrylamide networks and gold nanoparticles. Microsc Res Tech 71:409–412. doi: 10.1002/jemt.20568 CrossRefGoogle Scholar
  26. Stefanescu EA, Daranga C, Stefanescu C (2009) Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles. Materials 2:2095–2153. doi: 10.3390/ma2042095 CrossRefGoogle Scholar
  27. Tamami B, Ghasemi S (2010) Palladium nanoparticles supported on modified crosslinked polyacrylamide containing phosphinite ligand: a novel and efficient heterogeneous catalyst for carbon–carbon cross-coupling reactions. J Mol Catal A 322:98–105. doi: 10.1016/j.molcata.2010.02.025 CrossRefGoogle Scholar
  28. Thomas V, Namdeo M, Mohan YM et al (2008) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci 45:107–119. doi: 10.1080/10601320701683470 CrossRefGoogle Scholar
  29. Xiong Y, Siekkinen AR, Wang J et al (2007) Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem 17:2600. doi: 10.1039/b705253g CrossRefGoogle Scholar
  30. Yin Y, Xu X, Xia C, et al. (1998) Synthesis and characterization of poly(butyl acrylate-co-styrene)–silver nanocomposites by γ radiation in W/O microemulsions. Chem Commun 941–942Google Scholar
  31. Zhang Z, Han M (2003) One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J Mater Chem 13:641–643. doi: 10.1039/b212428a CrossRefGoogle Scholar
  32. Zhou Y, Yu S, Wang C (1999) A convenient ultraviolet irradiation technique for fabrication of silver–polymer nanocomposites. Chem Lett 7:677–678CrossRefGoogle Scholar
  33. Zhou Y, Hao L, Zhu Y (2001) A novel ultraviolet irradiation technique for fabrication of polyacrylamide–metal (M = Au, Pd) nanocomposites at room temperature. J Nanopart Res 2:379–383. doi: 10.1023/A:1012545621498 Google Scholar
  34. Zhu Y-J, Hu X-L (2003) Microwave-polyol preparation of single-crystalline gold nanorods and nanowires. Chem Lett 32:1140–1141. doi: 10.1246/cl.2003.1140 CrossRefGoogle Scholar
  35. Zhu J-F, Zhu Y-J (2006) Microwave-assisted one-step synthesis of polyacrylamide-metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol. J Phys Chem B 110:8593–8597. doi: 10.1021/jp060488b CrossRefGoogle Scholar
  36. Zhu Y, Qian Y, Li X, Zhang M (1997) γ-Radiation synthesis and characterization of polyacrylamide–silver nanocomposites. Chem Commun 82:1081–1082CrossRefGoogle Scholar
  37. Zhu Y, Qian Y, Li X, Zhang M (1998) A nonaqueous solution route to synthesis of polyacrylamide–silver nanocomposites at room temperature. Nanostruct Mater 10:673–678. doi: 10.1016/S0965-9773(98)00096-8 CrossRefGoogle Scholar
  38. Zhu J-F, Zhu Y-J, Ma M-G et al (2007) Simultaneous and rapid microwave synthesis of polyacrylamide–metal sulfide (Ag2S, Cu2S, HgS) nanocomposites. J Phys Chem C 111:3920–3926. doi: 10.1021/jp0677851 CrossRefGoogle Scholar

Copyright information

© European Union 2013

Authors and Affiliations

  • Cuiyan Li
    • 1
    • 2
  • Yanling Cai
    • 3
  • Yihua Zhu
    • 2
  • Mingguo Ma
    • 4
  • Wei Zheng
    • 5
  • Jiefang Zhu
    • 1
  1. 1.Department of Chemistry – Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.Division of Nanotechnology and Functional Materials, Ångström LaboratoryUppsala UniversityUppsalaSweden
  4. 4.Institute of Biomass Chemistry and Technology, College of Materials Science and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China
  5. 5.Engineering and Technology DepartmentUniversity of Wisconsin-StoutMenomonieUSA

Personalised recommendations