Advertisement

Journal of Nanoparticle Research

, 15:1904 | Cite as

Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery

  • Vijay Bhooshan Kumar
  • Madhavi Annamanedi
  • Muvva Durga Prashad
  • Kalle M. Arunasree
  • Yitzhak Mastai
  • Aharon GedankenEmail author
  • Pradip PaikEmail author
Research Paper

Abstract

This work presents a new synthesis of mesoporous SiO2–ZnO composite nanocapsules with sizes of 90–150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2–8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO2–ZnO was found to be ~230 m2 g−1. Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles (~5–7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO2–ZnO nanoparticles for using as the carrier of drugs and formation of “SiOZO-plex”, a complex of mesoporous SiO2–ZnO with DNA for gene delivery applications.

Graphical Abstract

Keywords

ZnO–SiO2 SiOZO-plex Mesoporous nanocapsules DNA DOX 

Notes

Acknowledgments

Authors would like to acknowledge the financial support from the University of Hyderabad (UoH) “START of GRANT” (Ref:UH/F&A/2011-12/SG) and UPE-II GRANT (UPE-II/R-10). Dr. Mrinal Bhattachariya (UoH) for providing plasmid DNA, and School of Life Science, UoH for supporting with cell culture facilities and for biological studies.

Supplementary material

11051_2013_1904_MOESM1_ESM.doc (2.1 mb)
Supporting file: Explanation for XRD results, HRTEM images for the distribution of ZnO in SiO2 (Fig. S1A, B), measure the fringe distance from HRTEM (Fig. S1C), Diffraction pattern (Fig. S1D), EDS (Fig. S1E), HRTEM image for warm-hole like mesopores (Fig. S2); Wide and Small angle XRD (Fig. S3), TGA of SiO2, ZnO and mesoporous SiO2–ZnO (Fig. S4)

References

  1. Afsal M, Wang C, Chu LW, Ouyangand H, Chen L (2012) Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires. J Mater Chem 22:8420–8425CrossRefGoogle Scholar
  2. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180CrossRefGoogle Scholar
  3. Aneesh PM, Jayara MK (2010) Red luminescence from hydrothermally synthesized Eu-doped ZnO nanoparticles under visible excitation. Bull Mater Sci 33(3):227–231CrossRefGoogle Scholar
  4. Attard GS, Glyde JC, Goltner CG (1995) Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378:366–368CrossRefGoogle Scholar
  5. Baek M, Kim MK, Cho HJ, Lee JA, Yu J, Chung HE, Choi SJ (2011) Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J Phys 304:012044Google Scholar
  6. Baleizao C, Gigante B, Das D, Alvaro M, Garcia H, Corma A. (2003) Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). ChemCommun: 1860–1861Google Scholar
  7. Brezesinski T, Groenewolt M, Gibaud A, Pinna N, Antonietti M, Smarsly BM (2006) Adv Mater 18:2260–2263CrossRefGoogle Scholar
  8. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  9. Chen CC, Liu P, Lu CH (2008) Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem Eng J 144:509–513CrossRefGoogle Scholar
  10. Cho S, Jung SH, Lee KH (2008) Structure of tetrakis (melaminium) bis(dihydrogenphosphate) monohydrogenphosphatetrihydrate from X-ray powder diffraction and solid-state NMR spectroscopy. J Phys Chem C112:12769–12776Google Scholar
  11. Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA (2004) Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: bulk and crack-free thin film morphologies. Adv Funct Mater 14:335–344CrossRefGoogle Scholar
  12. Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368CrossRefGoogle Scholar
  13. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. J Nat Rev Drug Discovery 6(6):443–453Google Scholar
  14. Deng C, Hu H, Shao G, Han C (2010) Facile template-free sonochemical fabrication of hollow ZnO spherical structures. Mater Lett 64(7):852–855CrossRefGoogle Scholar
  15. Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423CrossRefGoogle Scholar
  16. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811CrossRefGoogle Scholar
  17. Frank-Kamenetsky M, Anderson NN, Grefhorst A, Racie TS (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920CrossRefGoogle Scholar
  18. Gabashvili A, Dana D, Medina, Gedanken A, Mastai Y (2007) Templating mesoporous silica with chiral block copolymers and its application for enantioselective separation. J Phys Chem B 111:11105–11110CrossRefGoogle Scholar
  19. Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch A, Antonietti M, Sanchez C (2004) Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat Mater 3:787–792CrossRefGoogle Scholar
  20. Guo S, Wang E (2011) Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Chem Res 44:491–500CrossRefGoogle Scholar
  21. Haas I, Gedanken A (2006) Sonoelectrochemistry of Cu2+in the presence of cetyltrimethylammonium bromide: obtaining CuBr instead of copper. Chem Mater 18(5):1184–1189CrossRefGoogle Scholar
  22. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952CrossRefGoogle Scholar
  23. Hatton BD, Landskron K, Whitnall W, Perovic DD, Ozin GA (2005) Spin coated mesoporous organosilica thin film toward a new generation low dielectric constant material. Adv Mater 15:823–829Google Scholar
  24. Hoffmann F, Cornelius M, Morell J, Foroba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  25. Hu X, Cook S, Wang P, Hwang H (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072CrossRefGoogle Scholar
  26. Irimpan L, Krishnan B, Deepthy A, Nampoori VPN, Radhakrishnan P (2007) Excitation wavelength dependent fluorescence behaviour of nano colloids of ZnO. J Phys D Appl Phys 40:5670–5674CrossRefGoogle Scholar
  27. Jeong SY, Kim SW (1986) Biodegradable polymeric drug delivery systems. Arch Pharm Res 9:63–73CrossRefGoogle Scholar
  28. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Luminescence 27:455–462CrossRefGoogle Scholar
  29. Kumar VB, Sawian E, Mohanta D, Baruah S, Islam NS (2011) Physical and biophysical characteristics of nanoscale tungsten oxide particles and their interaction with human genomic DNA. J Nanosci Nanotechnol 11:4659–4666CrossRefGoogle Scholar
  30. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201CrossRefGoogle Scholar
  31. Ma MG, Zhu YJ, Cheng GF, Huang YH (2008) Microwave synthesis and characterization of ZnO with various morphologies. Mater Lett 62:507–510CrossRefGoogle Scholar
  32. McCormick CL, Sumerlin BS, Lokitz BS, Stempka JE (2008) RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter 4:1760–1773CrossRefGoogle Scholar
  33. Moosavi A, Sarrafi M, Aghaei A, Hessari FA, Keyanpour-Rad M (2012) Synthesis of mesoporous ZnO/SBA-15 composite via sonochemical route. Micro Nano Lett 7(2):130–133CrossRefGoogle Scholar
  34. Musyanovych AK, Landfester G, Auernhammer K,Butt HJ, Vollmer D (2008) In: Surface and interfacial forces––from fundamentals to applications, 134th edn. pp 120–127Google Scholar
  35. Nishino H, Huang CS, Shea KJ (2006) Selective Protein Capture by Epitope Imprinting. Angew Chem Int Ed 45:2392–2396CrossRefGoogle Scholar
  36. Niu K, Liang L, Gu Y, Ke Y, Duan F, Chen M (2011) Fabrication and photoluminescent properties of ZnO/mesoporous silica composites templated by a chelating surfactant. Langmuir 27(22):13820–13827CrossRefGoogle Scholar
  37. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164CrossRefGoogle Scholar
  38. O’Connor NA, Paisner DA, Huryn D, Shea KJ (2007) Screening of 5-HT1A receptor antagonists using molecularly imprinted polymers. J Am Chem Soc 129:1680–1689CrossRefGoogle Scholar
  39. O’Reilly RK, Joralemon MJ, Hawker CJ, Wooley KL (2006) Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. J Polym Sci Part A 44:5203–5217CrossRefGoogle Scholar
  40. Paik P, Zhang Y (2011) Synthesis of hollow and mesoporous polycaprolactone nanocapsules. Nanoscale 3:2215–2219CrossRefGoogle Scholar
  41. Paik P, Gedanken A, Mastai Y (2009) Enantioselective separation using chiral mesoporous spherical silica prepared by templating of chiral block copolymers. ACS Appl Mater Interfaces 1(8):1834–1842CrossRefGoogle Scholar
  42. Paik P, Gedanken A, Mastai Y (2010a) Chiral-mesoporous-polypyrrole nanoparticles: its chiral Recognition abilities and use in enantioselective separation. J Mat Chem 20:4085–4093CrossRefGoogle Scholar
  43. Paik P, Gedanken A, Mastai Y (2010b) Chiral separation abilities: aspartic acid block copolymer-imprinted mesoporous silica. Microporous Mesoporous Materials 129:82–89CrossRefGoogle Scholar
  44. Paiphansiri U, Tangboriboonrat P, Landfester K (2006) Polymeric nanocapsules containing an antiseptic agent obtained by controlled nanoprecipitation onto water-in-oil miniemulsion droplets. Macromol Bio Sci 6:33–40CrossRefGoogle Scholar
  45. Paula AR, Tafulo, Ferro M, Guerreiro A, Gonza G (2010a) Engineering the crystal growth behavior: “On substrate” MOD formation of ZnO hollow spheres. Appl Surf Sci 256:3281–3285CrossRefGoogle Scholar
  46. Paula AR, Ferro M, Guerreiro A, Gonza G (2010b) Engineering the crystal growth behavior: “On substrate” MOD formation of ZnO hollow spheres. Appl Surf Sci 256(2010):3281–3285Google Scholar
  47. Peng YY, Hsieh TE, Hsu CH (2006) White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnology 17:174–180CrossRefGoogle Scholar
  48. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230CrossRefGoogle Scholar
  49. Prouzet E, Pinnavaia TJ (1997) Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature. Angew Chem Int Ed Engl 36:516–518CrossRefGoogle Scholar
  50. Rimmer S, Carter S, Rutkaite R, Haycock JW, Swanson L (2007) Highly branched poly-(N-isopropyl acrylamide)s with arginine–glycine–aspartic acid (RGD)- or COOH-chain ends that form sub-micron stimulus-responsive particles above the critical solution temperature. Soft Matter 3:971–973CrossRefGoogle Scholar
  51. Son KJ, Yoon H, Kim J, Jang WD, Lee YV, Koh W (2011) Photosensitizing hollow nanocapsules for combination cancer therapy. Angew Chem Int Ed 50:11968–11971CrossRefGoogle Scholar
  52. Suresh KP, Paik P, Mangalaraj D, Gedanken A, Nataraj D (2012) Biodegradability study and pH influence on growth and orientation of ZnO nanorods via aqueous solution process. Appl Surf Sci 258:6765–6771CrossRefGoogle Scholar
  53. Tang Q, Zhou W, Shen J, Zhang W, Kong L, Qian Y (2004) A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem Commun 712–713Google Scholar
  54. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358CrossRefGoogle Scholar
  55. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Delivery Rev 63:1228–1246CrossRefGoogle Scholar
  56. Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647CrossRefGoogle Scholar
  57. Wang Zl (2007) Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A 88:7–15CrossRefGoogle Scholar
  58. Wang J, Takuya TS, Wang L (2010a) Reverse microemulsion-mediated synthesis of SiO2-coated ZnO composite nanoparticles: multiple cores with tunable shell thickness. ACS Appl Mater Interfaces 2(4):957–960CrossRefGoogle Scholar
  59. Wang Z, Lee YH, Wu B, Horst A, Kang Y, Tang YJ, Chen DR (2010b) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80:525–529CrossRefGoogle Scholar
  60. Wang L, Zhang X, Li B, Sun P, Yang J, Xu H, Liu Y (2011a) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3(4):1277–1281CrossRefGoogle Scholar
  61. Wang R, Guo J, Chen D, Miao YE, Pan J, Weei W, Liu T (2011b) “Tube brush” like ZnO/SiO2 hybrid to construct a flexible membrane with enhanced photocatalytic properties and recycling ability. J Mater Chem 21:19375–19380CrossRefGoogle Scholar
  62. Williamson GK, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  63. Xiao F, Chen R, Shen YQ, Dong JL, Wang HH, Zhang QY, Sun HD (2012) Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites. J Phys Chem C 116(24):13458–13462CrossRefGoogle Scholar
  64. Yang ST, Liu JH, Wang J, Yuan Y, Cao A, Wang H, Liu Y, Zhao Y (2010) Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. J Nanosci Nanotechnol 10(12):8638–8645CrossRefGoogle Scholar
  65. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698CrossRefGoogle Scholar
  66. Zhai J, Tao X, Pu Y, Zeng X, Chen JF (2010) Core/shell structured ZnO/SiO2 nanoparticles: preparation, characterization and photocatalytic property. Appl Surf Sci 257:393–397CrossRefGoogle Scholar
  67. Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Zhao J, Wu L, Zhi J (2008) Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection. J Mater Chem 18:2459–2465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Vijay Bhooshan Kumar
    • 1
  • Madhavi Annamanedi
    • 2
  • Muvva Durga Prashad
    • 3
  • Kalle M. Arunasree
    • 2
  • Yitzhak Mastai
    • 4
  • Aharon Gedanken
    • 4
    Email author
  • Pradip Paik
    • 1
    Email author
  1. 1.School of Engineering Sciences and Technology, University of HyderabadHyderabadIndia
  2. 2.Department of Animal SciencesSchool of Life Sciences, University of HyderabadHyderabadIndia
  3. 3.Centre for Nanoscience and NanotechnologyUniversity of HyderabadHyderabadIndia
  4. 4.Department of Chemistry, Institute for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations