Advertisement

Journal of Nanoparticle Research

, 15:1895 | Cite as

Synthesis and characterization of arsenic-doped cysteine-capped thoria-based nanoparticles

  • F. J. Pereira
  • M. T. Díez
  • A. J. AllerEmail author
Research Paper

Abstract

Thoria materials have been largely used in the nuclear industry. Nonetheless, fluorescent thoria-based nanoparticles provide additional properties to be applied in other fields. Thoria-based nanoparticles, with and without arsenic and cysteine, were prepared in 1,2-ethanediol aqueous solutions by a simple precipitation procedure. The synthesized thoria-based nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (ED-XRS), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and fluorescence microscopy. The presence of arsenic and cysteine, as well as the use of a thermal treatment facilitated fluorescence emission of the thoria-based nanoparticles. Arsenic-doped and cysteine-capped thoria-based nanoparticles prepared in 2.5 M 1,2-ethanediol solutions and treated at 348 K showed small crystallite sizes and strong fluorescence. However, thoria nanoparticles subjected to a thermal treatment at 873 K also produced strong fluorescence with a very narrow size distribution and much smaller crystallite sizes, 5 nm being the average size as shown by XRD and TEM. The XRD data indicated that, even after doping of arsenic in the crystal lattice of ThO2, the samples treated at 873 K were phase pure with the fluorite cubic structure. The Raman and FT-IR spectra shown the most characteristics vibrational peaks of cysteine together with other peaks related to the bonds of this molecule to thoria and arsenic when present.

Keywords

Thoria nanoparticles Synthesis Characterization Precipitation procedure 

Notes

Acknowledgments

A Contract from the Junta de Castilla y León, Consejería de Cultura, and Fondo Social Europeo was awarded to one of the authors (FJP) and is gratefully acknowledged.

References

  1. Altmaier M, Neck V, Fanghanel T (2004) Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution. Radiochim Acta 92:537–543. doi: 10.1524/ract.92.9.537.54983 CrossRefGoogle Scholar
  2. Ansoborlo E, Prat O, Moisy P, Den Auwer C, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C, Moulin V (2006) Actinide speciation in relation to biological processes. Biochimie 88:1605–1618. doi: 10.1016/j.biochi.2006.06.011 CrossRefGoogle Scholar
  3. Arora AK, Rajalakshmi M (2000) Resonance Raman scattering from Cd1–xZnxS nanoparticles dispersed in oxide glass. J Appl Phys 88:5653. doi: org/10.1063/1.1321025 CrossRefGoogle Scholar
  4. Avedesian MM, Baker H (eds) (1999) Magnesium and magnesium alloys. ASM International, Materials Park, p 28Google Scholar
  5. Balzar D (1999) Voigt-Function model in diffraction line-broadening analysis. In: Snyder RL, Bunge HJ, Fiala J (eds) Defect and microstructure analysis from diffraction. Oxford University Press, New York, pp 94–126Google Scholar
  6. Bitea C, Muller R, Neck V, Walther C, Kim JI (2003) Study of the generation and stability of thorium(IV) colloids by LIBD combined with ultrafiltration. Colloids Surfaces A 217:63–70. doi: 10.1016/S0927-7757(02)00559-9 CrossRefGoogle Scholar
  7. Cabrini A, Celotti G, Zannetti R (1971) X-ray diffraction investigations on the structure of some thoria gels. Inorg Chim Acta 5:137–144. doi: 10.1016/S0020-1693(00)95898-5 CrossRefGoogle Scholar
  8. Chandramouli V, Antonysamy S, Vasudeva Rao PR (1999) Combustion synthesis of thoria—a feasibility study. J Nucl Mater 265:255–261. doi: 10.1016/S0022-3115(98)00688-6 CrossRefGoogle Scholar
  9. Claudel B, Sautereau H, Williams RJJ (1975) Evidence for a vibronic spectrum in the photoluminescence of thoria. J Lumin 10:177–183. doi: 10.1016/0022-2313(75)90047-2 CrossRefGoogle Scholar
  10. Cullity BD (1978) In elements of X-Ray diffraction. Addison–Wesley, Reading, p 102Google Scholar
  11. Dash S, Singh A, Ajikumar PK, Subramanian H, Rajalakshmi M, Tyagi AK, Arora AK, Narasimhan SV, Raj B (2002) Synthesis and characterization of nanocrystalline thoria obtained from thermally decomposed thorium carbonate. J Nucl Mater 303:156–168. doi: 10.1016/S0022-3115(02)00816-4 CrossRefGoogle Scholar
  12. Geibert W, Usbeck R (2004) Adsorption of thorium and protactinium onto different particle types: experimental findings. Geochimica Cosmochimica Acta 68:1489–1501. doi: 10.1016/j.gca.2003.10.011 CrossRefGoogle Scholar
  13. Harding MM, Long HA (1968) The crystal and molecular structure of l-cysteine. Acta Crystallogr Sect B 24:1096–1102. doi: 10.1107/S0567740868003742 CrossRefGoogle Scholar
  14. IAEA (2005) Thorium fuel cycle—potential benefits and challenges. IAEA–TECDOC-1450. Vienna, p 1–7Google Scholar
  15. Khawas B (1971) X-ray study of l-arginine HCl, l-cysteine, DL-lysine and DL-phenylalanine. Acta Crystallogr Sect B 27:1517–1520. doi: 10.1107/S056774087100431X CrossRefGoogle Scholar
  16. Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr 223:552–560. doi: 10.1524/zkri.2008.1213 CrossRefGoogle Scholar
  17. Mompean FJ, Perrone J, Illemassene M, Rand M, Fuger J, Grenthe I, Neck V, Rai D (2008) Chemical thermodynamics of thorium. OECD Nuclear Energy Agency, Data Bank, F-92130 Issy-les-Moulineaux; North Holland Elsevier Science Publishers, AmsterdamGoogle Scholar
  18. Moody K, Grant P (1999) Nuclear forensic analysis of thorium. J Radioanal Nucl Chem 241:157–167. doi: 10.1007/BF02347304 CrossRefGoogle Scholar
  19. Neck V, Altmaier M, Muller R, Bauer A, Fanghanel T, Kim JI (2003) Solubility of crystalline thorium dioxide. Radiochim Acta 91:253–262. doi: 10.1524/ract.91.5.253.20306 CrossRefGoogle Scholar
  20. Nyquist RO, Kagel RO (1997) The handbook of infrared and Raman spectra of inorganic compounds and organic salts, Spectrum 58–63. Academic Press, San Diago, p 77Google Scholar
  21. Palamalai A, Mohan S, Sampath M, Srinivasan R, Govindan P, Chinnusamy A, Aman V, Balasubramanian G (1994) Final purification of uranium-233 oxide product from reprocessing treatment of irradiated thorium rods. J Radioanal Nucl Chem 177:291–299. doi: 10.1007/BF02061125 CrossRefGoogle Scholar
  22. Rajalakshmi M, Arora AK, Bendre BS, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445. doi: 10.1063/1.372199 CrossRefGoogle Scholar
  23. Rothe J, Denecke MA, Neck V, Muller R, Kim JI (2002) XAFS investigation of the structure of aqueous thorium(IV) species, colloids, and solid thorium(IV) oxide/hydroxide. Inorg Chem 41:249–258. doi: 10.1021/ic010579h CrossRefGoogle Scholar
  24. Scardi P, Leoni M, Delhez R (2004) Line broadening analysis using integral breadth methods: a critical review. J Appl Cryst 37:381–390. doi: 10.1107/S0021889804004583 CrossRefGoogle Scholar
  25. Shein IR, Ivanovskii AL (2008) Thorium compounds with non-metals: electronic structure, chemical bond, and physicochemical properties. J Struct Chem 49:348–370. doi: 10.1007/s10947-008-0134-0 CrossRefGoogle Scholar
  26. Swanson HE, McMurdie HF, Morris MC, Evans EH, Paretzkin B (1974). Standard X-ray diffraction powder patterns. National Bureau of Standards Monograph 25, Section 11, 86Google Scholar
  27. Vogler A, Kunkely H (2001) Luminescent metal complexes: diversity of excited states. Top Curr Chem 213:143–182. doi: 10.1007/3-540-44447-5_3 CrossRefGoogle Scholar
  28. Whitfield HJ, Roman D, Palmer AR (1966) X-ray study of the system ThO2–CeO2–Ce2O3. J Inorg Nucl Chem 28:2817–2825CrossRefGoogle Scholar
  29. Wickleder MS, Forest B, Dorhourt PARK (2006) Thorium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements (3rd ed). Springer Science + Business Media, p 53Google Scholar
  30. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31. doi: 10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  31. Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, Yang L, Mao H (2010) Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl 3:159–170. doi: 10.2147/NSA.S7462 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental SciencesUniversity of LeónLeónSpain

Personalised recommendations