Advertisement

Electrostatic adsorption of hematite nanoparticles on self-assembled monolayer surfaces

  • Boris L. T. Lau
  • Rixiang Huang
  • Andrew S. Madden
Research Paper

Abstract

Deposition of nanoparticles (NPs) on different environmental surfaces has important implication on their fate and transport in aquatic systems. This study quantitatively and kinetically analyzed the adsorption of hematite (α-Fe2O3) NPs (HNPs) onto self-assembled monolayer modified surfaces using QCM, AFM, and SEM. Experiments were conducted to study the immobilization of two different sizes of HNPs onto gold substrate and surfaces modified with 1-mercapto-11-undecanoic acid and cysteine. It is shown that the extent and rate of HNPs adsorption onto substrate surfaces can be modulated electrostatically. Control over the surface coverage of the adsorbed HNPs has been demonstrated by pH variation. Size-dependent adsorption kinetics was observed, with the 79 nm HNPs adsorbed 2–3 times faster than the 116 nm HNPs.

Keywords

Solid-water interface Quartz crystal microgravimetry (QCM) Atomic force microscopy (AFM) Scanning electron microscopy (SEM) 

Abbreviations

AFM

Atomic force microscopy

CYS

Cysteine

DLS

Dynamic light scattering

HNPs

Hematite nanoparticles

MUA

Mercapto-11-undecanoic acid

NOM

Natural organic matter

QCM

Quartz crystal microgravimetry

SAM

Self-assembled monolayer

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

ZP

Zeta potential

Notes

Acknowledgments

We are grateful to Benny Freeman for the opportunity and access to the SurPASS electrokinetic analyzer. Andrew S. Madden is grateful for laboratory assistance from Matthew Miller, Andrew Swindle, and Virginia Grace. This research was partially supported by NASA award NNX11AH11G to Andrew S. Madden.

Supplementary material

11051_2013_1873_MOESM1_ESM.docx (1.9 mb)
The Supporting Information section contains TEM images of hematite nanoparticles, their particle size distributions as determined by dynamic light scattering, and powder X-ray diffraction patterns. This information is available free of charge via the Internet at http://pubs.acs.org

References

  1. Amal R, Raper JA, Waite TD (1992) Effect of fulvic-acid adsorption on the aggregation kinetics and structure of hematite particles. J Colloid Interface Sci 151(1):244–257. doi: 10.1016/0021-9797(92)90255-k CrossRefGoogle Scholar
  2. Amirbahman A, Olson TM (1995) Deposition kinetics of humic matter-coated hematite in porous-media in the presence of Ca2+. Colloids Surf Physicochem Eng Aspects 99(1):1–10. doi: 10.1016/0927-7757(95)03134-y CrossRefGoogle Scholar
  3. Barton LE, Grant KE, Kosel T, Quicksall AN, Maurice PA (2011) Size-dependent Pb sorption to nanohematite in the presence and absence of a microbial siderophore. Environ Sci Technol 45(8):3231–3237. doi: 10.1021/es1026135 CrossRefGoogle Scholar
  4. Bentaleb A, Vera P, Delgado AV, Gallardo V (1994) Electrokinetic studies of monodisperse hematite particles–effects of inorganic electrolytes and amino-acids. Mater Chem Phys 37(1):68–75. doi: 10.1016/0254-0584(94)90073-6 CrossRefGoogle Scholar
  5. Bergkvist M, Mark SS, Yang X, Angert ER, Batt CA (2004) Bionanofabrication of ordered nanoparticle arrays: effect of particle properties and adsorption conditions. J Phys Chem B 108(24):8241–8248. doi: 10.1021/jp049280l CrossRefGoogle Scholar
  6. Bose S, Hochella MF, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976. doi: 10.1016/j.gca.2008.11.031 CrossRefGoogle Scholar
  7. Briand E, Gu C, Boujday S, Salmain M, Herry JM, Pradier CM (2007) Functionalisation of gold surfaces with thiolate SAMs: topography/bioactivity relationship–a combined FT-RAIRS AFM and QCM investigation. Surf Sci 601(18):3850–3855. doi: 10.1016/j.susc.2007.04.102 CrossRefGoogle Scholar
  8. Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523. doi: 10.1021/es0518068 CrossRefGoogle Scholar
  9. Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23(11):5920–5928. doi: 10.1021/la063744k CrossRefGoogle Scholar
  10. Ciardelli MC, Xu HF, Sahai N (2008) Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater. Water Res 42(3):615–624. doi: 10.1016/j.watres.2007.08.011 CrossRefGoogle Scholar
  11. Cwiertny DM, Handler RM, Schaefer MV, Grassian VH, Scherer MM (2008) Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite. Geochim Cosmochim Acta 72(5):1365–1380. doi: 10.1016/j.gca.2007.12.018 CrossRefGoogle Scholar
  12. Fisk JD, Rooth M, Shaw AM (2007) Gold nanoparticle adsorption and aggregation kinetics at the silica-water interface. J Phys Chem C 111(6):2588–2594. doi: 10.1021/jp063759r CrossRefGoogle Scholar
  13. Furman O, Usenko S, Lau BLT (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and adsorption of silver nanoparticles. Environ Sci Technol 47(3):1349–1356Google Scholar
  14. Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319(5870):1631–1635. doi: 10.1126/science.1141134 CrossRefGoogle Scholar
  15. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205. doi: 10.1021/mp0500014 CrossRefGoogle Scholar
  16. Ji XJ, Shao RP, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111(17):6245–6251. doi: 10.1021/jp0702245 CrossRefGoogle Scholar
  17. Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967. doi: 10.1021/es902987d CrossRefGoogle Scholar
  18. Kwon KD, Green H, Bjoorn P, Kubicki JD (2006) Model bacterial extracellular polysaccharide adsorption onto silica and alumina: quartz crystal microbalance with dissipation monitoring of dextran adsorption. Environ Sci Technol 40(24):7739–7744. doi: 10.1021/es061715q CrossRefGoogle Scholar
  19. Lenhart JJ, Heyler R, Walton EM, Mylon SE (2010) The influence of dicarboxylic acid structure on the stability of colloidal hematite. J Colloid Interface Sci 345(2):556–560. doi: 10.1016/j.jcis.2010.02.037 CrossRefGoogle Scholar
  20. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169. doi: 10.1021/cr0300789 CrossRefGoogle Scholar
  21. Madden AS, Hochella MF (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69(2):389–398. doi: 10.1016/j.gca.2004.06.035 CrossRefGoogle Scholar
  22. Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 + sorption. Geochim Cosmochim Acta 70(16):4095–4104. doi: 10.1016/j.gca.2006.06.1366 CrossRefGoogle Scholar
  23. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120. doi: 10.1021/bm020116i CrossRefGoogle Scholar
  24. Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20(21):9000–9006. doi: 10.1021/la049153g CrossRefGoogle Scholar
  25. Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association Russia. Science 314(5799):638–641. doi: 10.1126/science.1131307 CrossRefGoogle Scholar
  26. Olsson ALJ, van der Mei HC, Busscher HJ, Sharma PK (2009) Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. Langmuir 25(3):1627–1632. doi: 10.1021/la803301q CrossRefGoogle Scholar
  27. Plathe KL, von der Kammer F, Hassellov M, Moore J, Murayama M, Hofmann T, Hochella MF Jr (2010) Using FlFFF and aTEM to determine trace metal-nanoparticle associations in riverbed sediment. Environ Chem 7(1):82–93. doi: 10.1071/en09111 CrossRefGoogle Scholar
  28. Quevedo IR, Tufenkji N (2009) Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ Sci Technol 43(9):3176–3182. doi: 10.1021/es803388u CrossRefGoogle Scholar
  29. Sauerbrey G (1959) Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Z Angew Phys 155(2):206–222Google Scholar
  30. Schwertmann U, Cornell RM (2000) Iron oxide in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  31. Singer MJ, Bowen LH, Verosub KL, Fine P, Tenpas J (1995) Mossbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. Clays Clay Miner 43(1):1–7CrossRefGoogle Scholar
  32. Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245. doi: 10.1021/es048262e CrossRefGoogle Scholar
  33. Stumm W, Sulzberger B (1992) The cycling of iron in natural environments–considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta 56(8):3233–3257CrossRefGoogle Scholar
  34. Uto K, Yamamoto K, Kishimoto N, Muraoka M, Aoyagi T, Yamashita I (2008) Electrostatic adsorption of ferritin, proteins and nanoparticle conjugate onto the surface of polyelectrolyte multilayers. J Mater Chem 18(32):3876–3884. doi: 10.1039/b807178k CrossRefGoogle Scholar
  35. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39(5):1805–1834. doi: 10.1039/b907301a CrossRefGoogle Scholar
  36. Wang Y, Maksimuk S, Shen R, Yang H (2007) Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chem 9(10):1051–1056. doi: 10.1039/b618933d CrossRefGoogle Scholar
  37. Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9(12):1306–1316. doi: 10.1039/b712709j CrossRefGoogle Scholar
  38. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Edn 47(29):5362–5365. doi: 10.1002/anie.200800857 CrossRefGoogle Scholar
  39. Zeng H, Giammar DE (2011) U(VI) reduction by Fe(II) on hematite nanoparticles. J Nanopart Res 13(9):3741–3754. doi: 10.1007/s11051-011-0296-0 CrossRefGoogle Scholar
  40. Zhang W, Rittmann B, Chen YS (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45(6):2172–2178. doi: 10.1021/es103376y CrossRefGoogle Scholar
  41. Zhang SG, Zhang Y, Wang Y, Liu SM, Deng YQ (2012) Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble. Phys Chem Chem Phys 14(15):5132–5138. doi: 10.1039/c2cp23675c CrossRefGoogle Scholar
  42. Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247(2–3):102–111. doi: 10.1016/j.tox.2008.02.011 CrossRefGoogle Scholar
  43. Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, Zhao YL, Chai ZF (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351. doi: 10.1093/toxsci/kfn245 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Boris L. T. Lau
    • 1
    • 3
  • Rixiang Huang
    • 1
  • Andrew S. Madden
    • 2
  1. 1.Department of GeologyBaylor UniversityWacoUSA
  2. 2.School of Geology and GeophysicsUniversity of OklahomaNormanUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations