Enhancement of blue upconversion luminescence in hexagonal NaYF4:Yb,Tm by using K and Sc ions

  • Vishal Kale
  • Tero Soukka
  • Jorma Hölsä
  • Mika Lastusaari
Research Paper


Hexagonal (β)-NaYF4 is recognized as one of the most efficient hosts for NIR to blue and green upconversion (UC). A new method to tune the blue UC emission in β-NaYF4:Yb,Tm nanocrystals through the possible substitution of the host material with different concentrations of K+ and Sc3+ ions was investigated in detail. In this work, Na1−xKxYF4:Yb,Tm and NaY1−xScxF4:Yb,Tm nanocrystals were synthesized with varying Na:K and Y:Sc ratios. X-ray diffraction, transmission electron microscopy, and UC luminescence spectroscopy showed that size, morphology, and UC luminescence intensity were affected by the addition of K+ and Sc3+ ions. Substituted ions disturbed the local symmetry and also resulted in changes in the crystal field. The distance between Yb3+ and Tm3+ was affected by different concentration of K+ and Sc3+ ions, and those differences in the distance are responsible for tuning UC luminescence. This study revealed that when the concentration of K+ and Sc3+ ions were nominally increased from 20 to 100 mol% during synthesis, hexagonal NaYF4 changed to structurally different KYF4 and Na3ScF6 so that the solid solubility became difficult. We also demonstrate that the added K+ does not enter into the NaYF4 lattice, but it still plays an important role by controlling the Na/R ratio. K+ and Sc3+ ion concentration of 20 mol% during the synthesis was found to result in materials with size 30–35 nm, and shows ca. four times brighter UC emission than the previously reported lanthanide based nanocrystals. The enhancement in UC luminescence intensity makes upconversion nanophosphors versatile imaging tools for diagnosis.

Graphical Abstract


Upconversion luminescence NaYF4 Yb Tm Sc 

Supplementary material

11051_2013_1850_MOESM1_ESM.docx (18 kb)
ICPMS analysis results of Na1-xKxYF4:Yb,Tm and NaY1-xScxF4:Yb,Tm samples (DOCX 18kb)


  1. Abdul Jalil R, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29:4122–4128. doi:10.1016/j.biomaterials.2008.07.012 CrossRefGoogle Scholar
  2. Auzel F (2003) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–174. doi:10.1021/cr020357g CrossRefGoogle Scholar
  3. Carlos LD, Ferreira RAS, de Zea Bermudez V, Julian-Lopez B, Escribano P (2011) Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev 40:536–549. doi:10.1039/C0CS00069H CrossRefGoogle Scholar
  4. Carlson S, Xu Y, Norrestam R (1998) Single-crystal high-pressure studies of Na3ScF6. J Solid State Chem 135:116–120CrossRefGoogle Scholar
  5. Chen G, Liu H, Liang H, Somesfalean G, Zhang Z (2008) Upconversion emission enhancement in Yb3+/Er3+-Codoped Y2O3 nanocrystals by tridoping with Li+ ions. J Phys Chem C 112:12030–12036. doi:10.1021/jp804064g CrossRefGoogle Scholar
  6. Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4:3163–3168. doi:10.1021/nn100457j CrossRefGoogle Scholar
  7. Cheng Q, Sui J, Cai W (2012) Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 4:779–784. doi:10.1039/C1NR11365H CrossRefGoogle Scholar
  8. Dou Q, Zhang Y (2011) Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 27:13236–13241. doi:10.1021/la201910t CrossRefGoogle Scholar
  9. Gao D, Zhang X, Zheng H, Shi P, Li L, Ling Y (2013) Codopant ion-induced tunable upconversion emission in β-NaYF4:Yb3+/Tm3+ nanorods. Dalton Trans 42:1834–1841. doi:10.1039/C2DT31814H CrossRefGoogle Scholar
  10. Grzechnik A, Khaidukov N, Friese K (2013) Crystal structures and stability of trigonal KLnF4 fluorides (Ln = Y, Ho, Er, Tm, Yb). Dalton Trans 42:441–447. doi:10.1039/C2DT31483E CrossRefGoogle Scholar
  11. Hao JH, Gao J (2004) Abnormal reduction of Eu ions and luminescence in CaB2O4: Eu thin films. Appl Phys Lett 85:3720–3722. doi:10.1063/1.1808876 CrossRefGoogle Scholar
  12. Harju E, Hyppänen I, Hölsä J, Kankare J, Lahtinen M, Lastusaari M, Soukka T (2011) Polymorphism of NaYF4:Yb3+, Er3+ up-conversion luminescence materials. Zeitschrift für Kristallographie Proc 2011:381–387. doi:10.1524/zkpr.2011.0058 Google Scholar
  13. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multi colour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16:2102–2105. doi:10.1002/adma.200400772 CrossRefGoogle Scholar
  14. Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 0:4188–4190. doi:10.1039/B905927J CrossRefGoogle Scholar
  15. Huang Q, Yu J, Ma E, Lin K (2010) Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4. J Phys Chem C 114:4719–4724. doi:10.1021/jp908645h CrossRefGoogle Scholar
  16. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotech 22:93–97. doi:10.1038/nbt920 Google Scholar
  17. Klug HP, Alexander LE (1959) X-ray powder diffraction procedures. Wiley, New YorkGoogle Scholar
  18. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16:1244–1251. doi:10.1021/cm031124o CrossRefGoogle Scholar
  19. Lee KJ, Oh W-K, Song J, Kim S, Lee J, Jang J (2010) Photoluminescent polymer nanoparticles for label-free cellular imaging. Chem Commun 46:5229–5231CrossRefGoogle Scholar
  20. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847CrossRefGoogle Scholar
  21. Li C, Quan Z, Yang J, Yang P, Lin J (2007a) Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg Chem 46:6329–6337. doi:10.1021/ic070335i CrossRefGoogle Scholar
  22. Li C, Yang J, Quan Z, Yang P, Kong D, Lin J (2007b) Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chem Mater 19:4933–4942. doi:10.1021/cm071668g CrossRefGoogle Scholar
  23. Li DY, Wang YX, Zhang XR, Shi G, Liu G, Song YL (2013) White upconversion emission in Yb3+/Tm3+/Ho3+ doped SrMoO4 nanocrystals by high excited state energy transfer. J Alloy Compd 550:509–513. doi:10.1016/j.jallcom.2012.10.142 CrossRefGoogle Scholar
  24. Lu Q, Guo F, Sun L, Li A (2008) Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence. J Phys Chem C 112:2836–2844. doi:10.1021/jp077498c CrossRefGoogle Scholar
  25. Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721–13729. doi:10.1021/jp073920d CrossRefGoogle Scholar
  26. Qin W, Zhang D, Zhao D, Wang L, Zheng K (2010) Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem Commun 46:2304–2306. doi:10.1039/B924052G CrossRefGoogle Scholar
  27. Ren W, Tian G, Jian S, Gu Z, Zhou L, Yan L, Zhao Y (2012) TWEEN coated NaYF4:Yb, Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv 2:7037–7041. doi:10.1039/C2RA20855E CrossRefGoogle Scholar
  28. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32:751–767. doi:10.1107/S0567739476001551 CrossRefGoogle Scholar
  29. Shi F, Wang J, Zhang D, Qin G, Qin W (2011) Greatly enhanced size-tunable ultraviolet upconversion luminescence of monodisperse β-NaYF4:Yb, Tm nanocrystals. J Mater Chem 21:13413–13421. doi:10.1039/C1JM11480H CrossRefGoogle Scholar
  30. Sommerdijk JL (1973) Influence of host lattice on the infrared-excited visible luminescence in Yb3+, Er3+-doped fluorides. J Luminescence 6:61–67. doi:10.1016/0022-2313(73)90095-1. Accessed 16 July 2013Google Scholar
  31. Soukka T, Rantanen T, Kuningas K (2008) Photon upconversion in homogeneous fluorescence-based bioanalytical assays. Ann N Y Acad Sci 1130:188–200. doi:10.1196/annals.1430.027 CrossRefGoogle Scholar
  32. Tan MC, Al-Baroudi L, Riman RE (2011) Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4:Yb-Er. ACS Appl Mater Interfaces 3:3910–3915. doi:10.1021/am200768u CrossRefGoogle Scholar
  33. Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Huang L (2012) Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J Am Chem Soc 134:8340–8343. doi:10.1021/ja3016236 CrossRefGoogle Scholar
  34. Thoma RE, Karraker RH (1966) The sodium fluoride–scandium trifluoride system. Inorg Chem 5:1933–1937. doi:10.1021/ic50045a021 CrossRefGoogle Scholar
  35. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Zhao Y (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24:1226–1231. doi:10.1002/adma.201104741 CrossRefGoogle Scholar
  36. van der Ende BM, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095. doi:10.1039/B913877C CrossRefGoogle Scholar
  37. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+. J Phys Chem B 107:1107–1112. doi:10.1021/jp0218692 CrossRefGoogle Scholar
  38. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19:2924–2929. doi:10.1002/adfm.200900234 CrossRefGoogle Scholar
  39. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130:5642–5643. doi:10.1021/ja800868a CrossRefGoogle Scholar
  40. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989. doi:10.1039/B809132N CrossRefGoogle Scholar
  41. Wang J, Zhang G, Zhang Z, Zhang X, Zhao G, Wen F, Kang P (2006) Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent. Water Res 40:2143–2150. doi:10.1016/j.watres.2006.04.009 CrossRefGoogle Scholar
  42. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065. doi:10.1038/nature08777 Google Scholar
  43. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotech 19:316–317CrossRefGoogle Scholar
  44. Wu S, Duan N, Ma X, Xia Y, Yu Y, Wang Z, Wang H (2012) Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem Commun 48:4866–4868. doi:10.1039/C2CC00092J CrossRefGoogle Scholar
  45. Yan W, Weiping Q, Jisen Z, Chunyan C, Jishuang Z, Ye J (2007) Synthesis and upconversion luminescence of LaF3:Yb3+, Er3+/SiO2 core/shell microcrystals. J Rare Earths 25:605–608CrossRefGoogle Scholar
  46. Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2:953–959. doi:10.1039/B9NR00397E CrossRefGoogle Scholar
  47. Yuan P, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu Q-H (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale 4:5132–5137. doi:10.1039/C2NR31241G CrossRefGoogle Scholar
  48. Zhang L, Hu H, Qi C, Lin F (2001) Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses. Opt Mater 17:371–377CrossRefGoogle Scholar
  49. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Stucky GD (2011) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12:61–67. doi:10.1021/nl202949y CrossRefGoogle Scholar
  50. Zhang F, Che R, Li X, Yao C, Yang J, Shen D, Zhao D (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12:2852–2858. doi:10.1021/nl300421n CrossRefGoogle Scholar
  51. Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Zhao Y (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22:966–974. doi:10.1039/C1JM13758A CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Vishal Kale
    • 1
  • Tero Soukka
    • 1
  • Jorma Hölsä
    • 2
    • 3
  • Mika Lastusaari
    • 2
    • 3
  1. 1.Department of Biochemistry and Food Chemistry/BiotechnologyUniversity of TurkuTurkuFinland
  2. 2.Department of ChemistryUniversity of TurkuTurkuFinland
  3. 3.Turku Centre for Materials and Surfaces (MatSurf)TurkuFinland

Personalised recommendations